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1 More on Span and Linear Independence

1.1 A Brief Review of Span
Previously, we explored span and linear independence. Although these notions
seemed roughly motivated by similar ideas at that time, it turns out that they
are more closely related than they appeared.

Recall that the span of a collection of vectors in a vector space V can be
thought of as describing the unique linear/planar/hyper-planar subspace in V
containing that collection of vectors.

Example 1.1. Consider the vectors [
3
−3
2
] ∈ R3 and [

4
1
2
] ∈ R3. We have

span
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, c1, c2 ∈ R
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Our chosen vectors in R3 "point" in different "directions" (i.e, they are linearly
independent), and thus this spanning set forms a plane in R3:
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Figure 1: The plane spanned by [
3
−3
2
] ∈ R3 and [

4
1
2
] ∈ R3.

Remark 1.1. As always, we do not recommend relying on visual-spatial reason-
ing in general to determine the structure of the spanning set of a given collection
of vectors. Here, it simply serves as a valuable tool for building intuition.

More formally:

Definition 1.1 (Span). Let V be a vector space over the field F. Let {v1, . . . , vn} ⊂
V . We define

span{v1, . . . , vn} = {v ∈ V ∶ v = c1v1 +⋯ + cnvn, c1, . . . , cn ∈ F}.

If span{v1, . . . , vn} = V , we say that the collection {v1, . . . , vn} spans V .

But what can happen when we choose many vectors (and thus many "direc-
tions" in our vector space V )? We know in R3, for example, that choosing one
vector and taking its span gives us a line (if we do not choose the empty list or
the zero vector). Choosing two vectors and taking their span gives us a plane
if the vectors are linearly independent. What about three vectors? Barring lin-
early dependent cases, all linear combinations (the span) of the vectors in that
list would simply yield all of R3. (Intuitively, R3 has three axes, and our three
vectors pointing in three separate directions function as "axes" of our own, with
which we can reach any other vector in R3.)

At this point, adding more vectors to this spanning collection would be re-
dundant in the sense that such a vector is already in the span of (i.e, "reachable"
by) the previous vectors in collection. Thus, the notion of a "minimal spanning
list" naturally interests us - more on that later.
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1.2 More on Span
Inspired by the observation concerning the redundancy of the inclusion of addi-
tional vectors in a spanning list, we have the following proposition:

Proposition 1.1. Let V be a vector space. Let S = {v1, . . . , vn} ⊂ V . There
exists a set S′ ⊂ S such that the vectors in S′ are linearly independent and
spanS′ = spanS.

The proof of this proposition was given in the solution set to the exercises on
span and linear independence. We repeat it here for the sake of completeness.

Proof. Let S = {v1, . . . vn} span V . If S is already linearly independent, then
set L′ = L, and we are done. If S is not linearly independent (i.e., linearly
dependent), proceed as follows:

Begin with S0 = ∅ (the empty list). For i = 1, . . . , n, if vi ∉ span(Si−1), set
Si = Si−1 ∪ {vi}. Otherwise, set Si = Si−1 (that is, drop vi from the list). Let
S′ = Sn. Because the list is finite, this process ends.

Evidently, S′ ⊂ S, so spanS′ ⊂ spanL. Conversely, every dropped vi lies in
spanL′ by definition. Every dropped vi was in spanSi−1 ⊂ spanS′ at the moment
it was dropped. Hence, each vi ∈ spanS′, so spanS ⊂ spanS′, so spanS′ = spanS.

The list L′ is linearly independent by construction, since whenever we add
a new vector, it is not in the span of the vectors already kept. This is exactly
the criterion for linear independence.

Thus, S′ is a linearly independent list with spanS′ = spanS, and we are
done.

Intuitively, this proposition tells us that any spanning set is either "redun-
dant," in the sense that it contains vectors which are already in the span of the
others in the set, or just barely non-redundant, in the sense that set is already
linearly independent, yet still spans the entire space.

Until now, we have discussed span properties in terms of given lists of vectors
(i.e., we have asked about the properties of the space given by the span of a set
of vectors, or we have asked when a spanning list can be reduced to a linearly
independent list). However, in mathematics, we often ask if we can directly
relate such properties to the object of central interest; in linear algebra, we are
primarily interested in vector spaces1 and linear maps between them2.

Given a vector space V , can we say something about the span of any subset
of vectors of V ? First, recall that in this course, we restrict ourselves to spaces
"like" Fn, so we will consider Fn in lieu of a general vector space V .

Proposition 1.2. Let {v1, . . . , vm} ⊂ Fn. Suppose that span{v1, . . . , vm} = Fn.
Then m ≥ n.

1Technically, we are only interested in finite-dimensional vector spaces here. See the
"dimension" section for more details.

2This idea holds in general: vector spaces and linear maps, sets and functions, spaces with
"distance" and continuous functions, and so on. In mathematics, we try to tie properties to
the objects of interest or to the "natural" maps between them.
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In other words, Proposition 1.2 asserts that a set of vectors which, when
combined in every possible way, covers all n "directions" of Fn, must possess at
least n vectors. For example, consider any two vectors in R3. The span of these
vectors will at most form a plane.

Remark 1.2. Note that Proposition 1.2 is an implication, not an equivalence.
It gives us a necessary condition for a set of vectors in Fn to span Fn, but not
a sufficient condition. For example, the set of vectors {[

1
0
0
] , [

2
0
0
] , [

3
0
0
]} does not

span R3, despite containing three distinct vectors in R3.
However, this proposition does give us a way to rule out whether a set of

vectors in Fn spans Fn: if the given set contains less than n vectors, then it
cannot span Fn.

1.3 A Brief Review of Linear Independence
The notion of whether a list3 (v1, . . . , vn) of vectors has redundancies is captured
by the notion of linear (in)dependence.

Example 1.2. Consider the vectors [
4
2
2
] ∈ R3 and [

8
4
4
] ∈ R3. These vectors are

clearly scalar multiples of each other (2 ⋅ [
4
2
2
] = [

8
4
4
]), and thus they "point" in

the same "direction" in R3.

Figure 2: The vectors [
4
2
2
] (blue arrow) and [

8
4
4
] (red arrow) in R3.

3One might notice that we have made the distinction between sets and lists of vectors
throughout these notes. We make this distinction for two reasons. Firstly, we would like for
a vector to be linearly dependent with itself, and consequently we must have some structure
which allows for multiple copies of identical elements. Secondly, many processes through
which we obtain one list from another require a notion of order (i.e., the "first" vector and
the "second" vector in the collection).
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Since 2 ⋅ [
4
2
2
] = [

8
4
4
], we can write

2 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣
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2
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⎥
⎥
⎥
⎦

− 1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

8
4
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

In particular, the fact that the vectors are scalar multiples of each other
implies the existence of a linear combination of the vectors summing to zero,
with some coefficients nonzero. Directly determining whether many vectors are
scalar multiples of one another proves time-consuming for large lists of vectors,
so we formalize this idea algebraically.

Definition 1.2 (Linear independence). Let V be a vector space over the field
F. A list of vectors (v1, . . . , vn) is said to be linearly independent if the only
choice of c1, . . . , cn ∈ F such that

c1v1 +⋯ + cnvn = 0

is c1 = ⋯ = cn = 0. A list of vectors which is not linearly independent is said to
be linearly dependent.

1.4 More on Linear Independence
In the previous section, we obtained a linearly independent list from a spanning
list. We generalize Proposition 1.1 to any list of linearly dependent vectors.

Proposition 1.3 (Linear dependence lemma). Let V be a vector space over the
field F. Let (v1, . . . , vn) be a linearly dependent list of vectors in V with v1 ≠ 0.
There exists j ∈ {2, . . . , n} such that:

1. vj ∈ span(v1, . . . vj−1).

2. span(v1, . . . vj−1, vj+1, . . . , vn) = span(v1, . . . , vn).

Although the proof of Proposition 1.3 is relegated to Linear Algebra 2, we
recommend attempting the proof as an exercise.

Similarly to Proposition 1.1, this proposition tells us that pruning redundant
vectors (i.e., vectors which are linear combinations of other vectors in the list)
from a list does not affect the spanning properties of the list. Intuitively, this
should feel natural; the subspace given by span is, in some sense, a measure of
how many directions one has to work with. For example, if one has two linearly
independent vectors in R3, then one has two distinct "directions" (i.e., the two
vectors are not scalar multiples of each other). If I add multiple copies of one
"direction," then I have redundancies; one is enough!

Remark 1.3. Note that Proposition 1.3 is actually an equivalence. That is,
having a linear dependent list implies we can remove vectors from the list and
retain the same span, but being able to remove vectors from the list and retain
the same span also implies that our original list was linearly dependent.
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Example 1.3. Consider the list of vectors ([ 3
−2 ] , [

0
1 ] , [

2
1 ]) in R2. How can we

obtain a span-preserving linear independent list from this list of vectors? First,
note that this list of vectors is linearly dependent. Indeed,

[
2
1
] = 2/3 ⋅ [

3
−2
] + 7/3 ⋅ [

0
1
] .

By part 2 of Proposition 1.3 with j = 3, we have

span([ 3
−2
] , [

0
1
]) = span([ 3

−2
] , [

0
1
] , [

2
1
]) .

But is the list ([ 3
−2 ] , [

0
1 ]) linearly independent?

Before applying Gaussian elimination, we should think about these vectors.
Our goal is to find a counterexample (i.e., a choice of not identically zero scalars
such that the associated linear combination of these vectors is zero). For the first
slot to be zero, note that the first vector in the modified list must have its first
entry equal to zero, and this forces c1 = 0, which also forces c2 = 0, since the
second entry of the second vector must also be zero.

Consequently, the list ([ 3
−2 ] , [

0
1 ]) is linearly independent, and we are done.

In the case of Example 1.3, we were able to reason about the vectors to
obtain a linearly independent list. In general, however, this is not sufficient.
How can we find such lists systematically? Gaussian elimination proves useful.

Let (v1, . . . , vn) be a list of vectors in the vector space V . We create the
matrix

M = [v1, . . . , vn]

which is simply the matrix having as columns the vectors in (v1, . . . , vn). We
apply Gaussian elimination to obtain the matrix M in row-echelon form. If,
following this reduction, there is some variable that can be rewritten in terms of
the others, we remove that variable (i.e., remove the vector in the corresponding
column). We continue removing such variables until no additional variables can
be removed.

Example 1.4. Consider the list of vectors ([
1
1
0
] , [

1
0
1
] , [

0
1
1
] , [

1
1
1
]) in R3 and form

the matrix with these as columns:

M = [v1 v2 v3 v4] =
⎛
⎜
⎝

1 1 0 1
1 0 1 1
0 1 1 1

⎞
⎟
⎠
.

We apply Gaussian elimination to M :

R2 ← R2 −R1 ∶
⎛
⎜
⎝

1 1 0 1
0 −1 1 0
0 1 1 1

⎞
⎟
⎠
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R3 ← R3 +R2 ∶
⎛
⎜
⎝

1 1 0 1
0 −1 1 0
0 0 2 1

⎞
⎟
⎠

This is in row-echelon form. Let us change our point of view for a moment. If
we were to solve

c1v1 + c2v2 + c3v3 = v4,

we could form the matrix with v1, v2, v3 as columns and v4 as the augmented
right-hand side:

⎛
⎜
⎝

1 1 0 1
1 0 1 1
0 1 1 1

⎞
⎟
⎠
.

Applying Gaussian elimination to this augmented matrix, we would ultimately
obtain

⎛
⎜
⎝

1 1 0 1
0 −1 1 0
0 0 2 1

⎞
⎟
⎠
,

Notice that this is the same row-echelon form we obtained for the matrix M =

[v1 v2 v3 v4], except now we have an additional column corresponding to v4.
The first three columns are pivot columns, and the fourth is not. This tells us
that v4 can be written as a linear combination of v1, v2, and v3, since if we
continued the elimination process to reduced row-echelon form, we would find

⎛
⎜
⎝

1 0 0 1
2

0 1 0 1
2

0 0 1 1
2

⎞
⎟
⎠
,

which corresponds to the equations

c1 =
1
2
, c2 =

1
2
, c3 =

1
2
,

and hence
v4 =

1
2
v1 +

1
2
v2 +

1
2
v3.

In general, the pivot columns identify a span-preserving linearly independent
list, and any non-pivot columns can be discarded without changing the span.

In Proposition 1.2, we tied a property concerning the length of spanning lists
in a vector space to the vector space itself. We can say something similar to
this proposition for linearly independent lists. Again, we restrict ourselves to
spaces "like" Fn.

Proposition 1.4. Let (v1, . . . , vm) be a linearly independent list in Fn. Then
m ≤ n.

Intuitively, this proposition states that there cannot exist a list of vectors in a
vector space with more "directions" than the space allows4. For example, R2 has

4We formalize this intuition in the next section.
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two "directions," and thus there cannot be a list of three linearly independent
vectors in R2.

While Proposition 1.3 provides us with a way to obtain a linearly indepen-
dent list from a spanning list, we would similarly like to obtain a spanning list
from a linearly independent list. We can infer from the inequalities in Propo-
sitions 1.2 and 1.1 that such a process will involve extending the given linearly
independent list.

Proposition 1.5. Let (v1, . . . , vn) be a linearly independent list in a vector
space5 V . The list (v1, . . . , vn) can be extended to a linearly independent list
(v1, . . . , vm), m ≥ n, with span(v1, . . . , vm) = V .

We leave the proof of Proposition 1.5 as an exercise.
The way to do such extensions systematically is to mimic the deletion process

for the reduction to linearly independent lists in reverse. Before, we began
with a spanning list, constructed a matrix with these vectors as columns, and
applied Gaussian elimination to remove non-pivot columns. Now, we begin with
a linearly independent list, place its vectors as columns of a matrix, and again
perform Gaussian elimination. If the resulting row-echelon form contains zero
rows, this indicates that some directions in the space are still missing from the

span of our current list. We then append vectors of the form
⎡
⎢
⎢
⎢
⎢
⎣

0
⋮

1
⋮

0

⎤
⎥
⎥
⎥
⎥
⎦

to "patch"

these missing directions.

1.5 Exercises

1. Extend the list ([
2
−1
3
2
] , [

0
1
6
−5
]) to a spanning list of R4.

2. Reduce the list ([
3
−2
6
] , [

4
1
3
] , [

1
2
6
] , [

−2
1
1
]) to a linearly independent list in R3.

3. Extend the list ([
2
−1
3
] , [

0
1
−2
]) to a spanning list of Z3

5.

4. Provide two different spanning lists of Z2
7 and prove they span Z2

7.

5. (⋆) The vectors ([
2
−1
0
] , [

1
0
1
] , [

3
1
5
]) span a certain subspace of R3 (i.e., the

trivial subspace, a line, a plane, or R3 itself). Determine the kind of sub-
space they span. Reduce them to a span-preserving linearly independent
list (if the list is not linearly independent already).

Bonus. Show Proposition 1.5.
5The vector space V is assumed to be finite-dimensional in the in the next two sections

unless explicitly stated otherwise.
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2 Bases and Dimension
In Propositions 1.4 and 1.2, we observed that, in Fn, any spanning list of vectors
has at least n members, while any linearly independent list of vectors has at
most n members. This suggests that, in Fn, there is something special about
lists of vectors of length n. Such lists are "almost" too large to be linearly
independent, yet as small as they can be to span Fn. It would be prescient
to give lists of length n which "barely" span Fn, but are also "barely" linearly
independent in Fn, a name.

Definition 2.1 (Basis). Let V be a vector space and let (v1, . . . , vn) be a list
of vectors in V . The list (v1, . . . , vn) is said to be a basis for the space V if
(v1, . . . , vn) is linearly independent and spans V .

Example 2.1. Consider the list ([
1
0
0
] , [

0
1
0
] , [

0
0
1
]) of vectors in R3. Clearly this

list of vectors spans R3, since for any [
c1
c2
c3
] ∈ R3, we have

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= c1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c2 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c3 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Furthermore, this list is linearly independent; as an augmented matrix, the list
has a pivot in every column. Consequently, ([

1
0
0
] , [

0
1
0
] , [

0
0
1
]) is a basis of R3.

Figure 3: The vectors [
1
0
0
] (blue arrow), [

0
1
0
] (black arrow), and [

0
0
1
] (pink arrow).

Note that the definition of basis immediately implies that all bases for a vector
space have the same number of elements. Notice we said "all bases." Bases are
certainly not unique. Indeed, multiplying each vector in the list of Example 2.1
by −1 (and, in fact, any non-zero scalar) also yields a basis.
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The bases of a vector space form a sort of fundamental object for under-
standing the space. Bases are so fundamental, in fact, that their consistent
length leads us to the following definition.

Definition 2.2 (Dimension of a vector space). Let V be a vector space. Let
(v1, . . . , vn) be a basis of V . We say the vector space V has dimension n.

The notion of dimension formalizes our intuition of "number of directions
in a space." The space R3, for example, has three "directions," and thus, per-
haps unsurprisingly, has dimension 3, Fn has dimension n, planes in R3 have
dimension 2, and so on.

But why should this be the case? Why are these ideas of being both span-
ning and linearly independent, when coupled, yielding a notion of dimension so
compatible with our intuition? Consider Rn, and think of the largest spanning
set of vectors you can think of. The largest such spanning set is just Rn itself.
Similarly, think of the smallest linearly independent list: the empty list. What
meaningfully distinguishes Rn from Rn∖{[

104
−35
82
]}? Similarly, what meaningfully

distinguishes ∅ from ∅ ∪ [
1
2
0
]? It appears that defining dimension in any other

way would lead to some arbitrary choice of n. However, if we define dimension
as in Definition 2.2, the dimension of the space is the only value for which we
obtain a coincidence between spanning lists and linearly independent lists.

The importance of bases, as well as our intuition for them, are reaffirmed
by the following two propositions, which tell us that "barely" spanning a vector
space and "barely" being linearly independent are sufficient conditions for being
a basis.

Proposition 2.1 (All minimal spanning lists are bases). Let V be a vector space
of dimension n and let (v1, . . . , vn) be a spanning list for V . Then (v1, . . . , vn)
is a basis for V .

Proposition 2.2 (All maximal linearly independent lists are bases). Let V be
a vector space of dimension n and let (v1, . . . , vn) be linearly independent list.
Then (v1, . . . , vn) is a basis for V .

These propositions inform us that bases are characterized both by their
minimal spanning property and by their maximal linearly independent property.

Remark 2.1. Etymologically, the word "basis" comes from the Latin noun "ba-
sis," which means a base or a foundation. Naturally, one can think of a basis
for a vector space as the foundation from which all vectors in the space are
generated.

While we have defined basis and discussed some of its properties, we have not
yet discussed how to computationally determine when a given list of vectors is
a basis for a vector space. We determine when a list of vectors is a basis by
verifying that the list is both spanning and linearly independent. Earlier, we
saw how to verify these properties via Gaussian elimination, so the process for
determining when a list of vectors is a basis is simple: form a matrix with the
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vectors of the list as its columns, apply Gaussian elimination to this matrix,
and determine whether the list is linearly independent and spanning. If either
of these conditions fail (i.e., the Gaussian elimination yields a zero row or a
column with no pivots), the list of vectors is not a basis.

Example 2.2. Consider the list of vectors ([
1
2
3
] , [

0
1
2
] , [

1
0
1
]) in R3 and form the

matrix with these vectors as columns:

M = [v1 v2 v3] =
⎛
⎜
⎝

1 0 1
2 1 0
3 2 1

⎞
⎟
⎠
.

We apply Gaussian elimination to M :

R2 ← R2 − 2R1 ∶
⎛
⎜
⎝

1 0 1
0 1 −2
3 2 1

⎞
⎟
⎠

R3 ← R3 − 3R1 ∶
⎛
⎜
⎝

1 0 1
0 1 −2
0 2 −2

⎞
⎟
⎠

R3 ← R3 − 2R2 ∶
⎛
⎜
⎝

1 0 1
0 1 −2
0 0 2

⎞
⎟
⎠
.

This matrix has no zero rows, so the list spans R3. Additionally, the matrix
has a pivot in every column, so it is linearly independent. Consequently, the list

([
1
2
3
] , [

0
1
2
] , [

1
0
1
]) is a basis for R3.

We conclude with a few facts concerning dimension. An important notion is
that of finite dimensionality.

Definition 2.3 (Finite dimensional vector space). Let V be a vector space. The
space V is said to be finite dimensional if there exists a finite list (v1, . . . , vn)
of vectors such that span(v1, . . . , vn) = V . Otherwise, V is said to be infinite
dimensional.

Definition 2.3 captures the intuitive idea that a space is finite in terms of "di-
mensional size" if one can reach every point in the space with only finitely
many "directions." As an immediate consequence of this definition, we have the
following proposition.

Proposition 2.3. Let V be a finite dimensional vector space. All subspaces of
V are also finite dimensional.

Since a vector space can have infinitely many bases, it is probably a good idea
to have some sort of "default" basis. With the notion of dimension in hand, we
are prepared to define this formally.
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Definition 2.4 (Standard basis). Let V be a vector space with dimension n ∈ Z+
over the field F. The list of vectors (v1, . . . , vn) with the property that vi has a
1 in its ith slot and 0 in all others is called the standard basis for V .

2.1 Exercises
1. Is the list ([

1
2
2
] , [

2
1
2
] , [

2
2
1
]) a basis for R3? Justify your response.

2. Extend the list ([
2
−7
3
] , [

5
−3
1
]) to a basis for R3. Prove that the resulting

list is a basis.

3. Provide a basis for C2 that is not a scalar multiple of the standard basis.
Prove that it is a basis for C2.

4. What is the dimension of M2,4(R)? Justify your response.

5. Modify the list ([ −13 ] , [ 2
−4 ] , [

3
1 ]) so that the resulting list is a basis for Z2

7.
Prove that the resulting list is a basis.

6. Let F be a field. Provide a basis for F. Prove that it is a basis for F. Are
there lists of elements in F which do not comprise a basis?

7. Extend the list ([
1
−4
5
2
]) to a basis for R4. Prove that the resulting list is a

basis.

8. Show that the same three vectors from Exercise 1 form a basis of Z3
2.

9. Provide a list of vectors that is a basis for R2, but not for Z2
5. Prove that

it is a basis for R2, but not for Z2
5

10. (⋆) A finite dimensional vector space cannot contain an infinite dimen-
sional subspace, but can an infinite dimensional vector space contain a
finite dimensional subspace?

11. (⋆) Show that the list ([
k−1
k
k
k

] , [
k

k−1
k
k

] , [
k
k

k−1
k

] , [
k
k
k

k−1

]), k ∈ Z, k ≥ 1, is a

basis for R4.

12. True or false: there is a spanning list of length 2 in R4. Justify your
response.

13. True or false: there is a linearly independent list of length 9 in R15. Justify
your response.

Bonus. Deduce the probability that any two random vectors in R2 do not form a
basis.
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