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1 Span and Linear Independence

1. Extend the list ([
2
−1
3
2
] , [

0
1
6
−5
]) to a spanning list of R4.

Solution. We form a matrix with our two vectors ([
2
−1
3
2
] , [

0
1
6
−5
]) as its columns. This

will allow us to find the "directions" in which which neither of these vectors
point. Such directions correspond precisely to the zero rows of this matrix
in REF. Form the matrix

⎛

⎜
⎜
⎜

⎝

2 0
−1 1
3 6
2 −5

⎞

⎟
⎟
⎟

⎠

.

Applying Gaussian elimination, we have

R1 ←
1

2
R1 ∶

⎛

⎜
⎜
⎜

⎝

1 0
−1 1
3 6
2 −5

⎞

⎟
⎟
⎟

⎠

R1 ←
1

2
R1 ∶

⎛

⎜
⎜
⎜

⎝

1 0
−1 1
3 6
2 −5

⎞

⎟
⎟
⎟

⎠

R2 ← R1 +R2 ∶

⎛

⎜
⎜
⎜

⎝

1 0
0 1
3 6
2 −5

⎞

⎟
⎟
⎟

⎠

R3 ← −3R1 +R3 ∶

⎛

⎜
⎜
⎜

⎝

1 0
0 1
0 6
2 −5

⎞

⎟
⎟
⎟

⎠
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R4 ← −2R1 +R4 ∶

⎛

⎜
⎜
⎜

⎝

1 0
0 1
0 6
0 −5

⎞

⎟
⎟
⎟

⎠

R3 ← −6R2 +R3 ∶

⎛

⎜
⎜
⎜

⎝

1 0
0 1
0 6
0 −5

⎞

⎟
⎟
⎟

⎠

R3 ← −6R2 +R3 ∶

⎛

⎜
⎜
⎜

⎝

1 0
0 1
0 0
0 −5

⎞

⎟
⎟
⎟

⎠

R4 ← 5R2 +R4 ∶

⎛

⎜
⎜
⎜

⎝

1 0
0 1
0 0
0 0

⎞

⎟
⎟
⎟

⎠

.

Thus, our missing directions correspond to the third and fourth slots in
vectors in R4. Consequently, we form the following spanning list

([

2
−1
3
2
] , [

0
1
6
−5
] , [

0
0
1
0
] , [

0
0
0
1
]) in R4.

2. Reduce the list ([
3
−2
6
] , [

4
1
3
] , [

1
2
6
] , [

−2
1
1
]) to a linearly independent list in R3.

Solution. Note that no list of length greater than 3 in R3 can be linearly independent,
so we know we will have to drop a vector from this list. We begin by
forming the following matrix

⎛

⎜

⎝

3 4 1 −2
−2 1 2 1
6 3 6 1

⎞

⎟

⎠

.

We then apply Gaussian elimination to this matrix.

R1 ←
1

3
R1 ∶

⎛

⎜

⎝

1 4/3 1/3 −2/3
−2 1 2 1
6 3 6 1

⎞

⎟

⎠

R2 ← R2 + 2R1 ∶

⎛

⎜

⎝

1 4/3 1/3 −2/3
0 11/3 8/3 −1/3
6 3 6 1

⎞

⎟

⎠
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R3 ← R3 − 6R1 ∶

⎛

⎜

⎝

1 4/3 1/3 −2/3
0 11/3 8/3 −1/3
0 −5 4 5

⎞

⎟

⎠

R2 ←
3

11
R2 ∶

⎛

⎜

⎝

1 4/3 1/3 −2/3
0 1 8/11 −1/11
0 −5 4 5

⎞

⎟

⎠

R1 ← R1 −
4

3
R2 ∶

⎛

⎜

⎝

1 0 −7/11 −6/11
0 1 8/11 −1/11
0 −5 4 5

⎞

⎟

⎠

R3 ← R3 + 5R2 ∶

⎛

⎜

⎝

1 0 −7/11 −6/11
0 1 8/11 −1/11
0 0 84/11 50/11

⎞

⎟

⎠

R3 ←
11

84
R3 ∶

⎛

⎜

⎝

1 0 −7/11 −6/11
0 1 8/11 −1/11
0 0 1 25/42

⎞

⎟

⎠

R1 ← R1 +
7

11
R3 ∶

⎛

⎜

⎝

1 0 0 −1/6
0 1 8/11 −1/11
0 0 1 25/42

⎞

⎟

⎠

R2 ← R2 −
8

11
R3 ∶

⎛

⎜

⎝

1 0 0 −1/6
0 1 0 −11/21
0 0 1 25/42

⎞

⎟

⎠

.

The fourth column of the row-reduced matrix has no pivots in its last
column. Consequently, the vector [

−2
1
1
] is in the span of the vectors

([
3
−2
6
] , [

4
1
3
] , [

1
2
6
]). We obtain the following linearly independent list: ([

3
−2
6
] , [

4
1
3
] , [

1
2
6
]).

3. Extend the list ([
2
−1
3
] , [

0
1
−2
]) to a spanning list of Z3

5.

Solution. Note that no list of length 2 of vectors in Z3
5 can span Z3

5, thus we will
have to add a third vector. We use Gaussian elimination on the following
matrix to accomplish this. First, we form the following matrix:

⎛

⎜

⎝

2 0
4 1
3 3

⎞

⎟

⎠

.

Applying Gaussian elimination, we have
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R1 ← 3R1 ∶

⎛

⎜

⎝

1 0
4 1
3 3

⎞

⎟

⎠

R2 ← R1 +R2 ∶

⎛

⎜

⎝

1 0
0 1
3 3

⎞

⎟

⎠

R3 ← 2R1 +R3 ∶

⎛

⎜

⎝

1 0
0 1
0 3

⎞

⎟

⎠

R3 ← 2R2 +R3 ∶

⎛

⎜

⎝

1 0
0 1
0 0

⎞

⎟

⎠

.

Consequently, our missing direction, indicated by the zero row, is supple-
mented by the addition of the vector [

0
0
1
] to the list. The list ([

2
−1
3
] , [

0
1
−2
] , [

0
0
1
])

thus spans Z3
5, as the above Gaussian elimination demonstrates.

4. Provide two different spanning lists of Z2
7 and prove they span Z2

7.

Solution. The "simplest" spanning list of Z2
7 is

⎛

⎜

⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟

⎠

.

.

This list is clearly spanning, since for any [
c1
c2
c3
] ∈ Z2

7, we have

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= c1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The next most simple spanning list is

⎛

⎜

⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
−1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟

⎠

.

.

This list is spanning as well, since for any [
c1
c2
c3
] ∈ Z2

7, we have

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −c1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ −c2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
−1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ −c3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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5. (⋆) The vectors ([
2
−1
0
] , [

1
0
1
] , [

3
1
5
]) span a certain subspace of R3 (i.e., the

trivial subspace, a line, a plane, or R3 itself). Determine the kind of sub-
space they span. Reduce them to a span-preserving linearly independent
list (if the list is not linearly independent already).

Solution. Form the matrix

⎛

⎜

⎝

2 1 3
−1 0 1
0 1 5

⎞

⎟

⎠

.

We apply Gaussian elimination:

R2 ← 2R2 +R1 ∶

⎛

⎜

⎝

2 1 3
0 1 5
0 1 5

⎞

⎟

⎠

R3 ← R3 −R2 ∶

⎛

⎜

⎝

2 1 3
0 1 5
0 0 0

⎞

⎟

⎠

R1 ← R1 −R2 ∶

⎛

⎜

⎝

2 0 −2
0 1 5
0 0 0

⎞

⎟

⎠

R1 ←
1

2
R1 ∶

⎛

⎜

⎝

1 0 −1
0 1 5
0 0 0

⎞

⎟

⎠

.

Thus, the list is linearly dependent. In particular, the third vector can be
written as a linear combination of the first two. Thus, the given list of
vectors spans a plane in R3. We can drop the third vector from the list
and retain the span of the original list of vectors. Furthermore, dropping
the vector yields a linearly independent list by the Gaussian elimination
above. The final list is ([

2
−1
0
] , [

1
0
1
]).

2 Bases and Dimension
1. Is the list ([

1
2
2
] , [

2
1
2
] , [

2
2
1
]) a basis for R3? Justify your response.

Solution. The list does form a basis for R3. We form the matrix

⎛

⎜

⎝

1 2 2
2 1 2
2 2 1

⎞

⎟

⎠

.
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Applying Gaussian elimination, we have

R2 ← R2 − 2R1 ∶

⎛

⎜

⎝

1 2 2
0 −3 −3
2 2 1

⎞

⎟

⎠

R3 ← R3 − 2R1 ∶

⎛

⎜

⎝

1 2 2
0 −3 −2
0 −2 −3

⎞

⎟

⎠

R3 ← 3R3 − 2R2 ∶

⎛

⎜

⎝

1 2 2
0 −3 −2
0 0 −5

⎞

⎟

⎠

R3 ← −
1

5
R3 ∶

⎛

⎜

⎝

1 2 2
0 −3 −2
0 0 1

⎞

⎟

⎠

R2 ← R2 + 2R3 ∶

⎛

⎜

⎝

1 2 2
0 −3 0
0 0 1

⎞

⎟

⎠

R1 ← R1 − 2R3 ∶

⎛

⎜

⎝

1 2 0
0 −3 0
0 0 1

⎞

⎟

⎠

R2 ← −
1

3
R2 ∶

⎛

⎜

⎝

1 2 0
0 1 0
0 0 1

⎞

⎟

⎠

R1 ← R1 − 2R2 ∶

⎛

⎜

⎝

1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

.
Consequently, the list does form a basis of R3, since the reduced matrix
possesses a pivot in every row (spanning) and a pivot in every column
(linearly independent).

2. Extend the list ([
2
−7
3
] , [

5
−3
1
]) to a basis for R3. Prove that the resulting

list is a basis.

Solution. We identify the zero row via Gaussian elimination. First, we form the
matrix

⎛

⎜

⎝

2 5
−7 −3
3 1

⎞

⎟

⎠

.
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Then, applying Gaussian elimination, we find

R2 ← 2R2 + 7R1 ∶

⎛

⎜

⎝

2 5
0 29
3 1

⎞

⎟

⎠

R3 ← 2R3 − 3R1 ∶

⎛

⎜

⎝

2 5
0 29
0 −13

⎞

⎟

⎠

R2 ←
1

29
R2 ∶

⎛

⎜

⎝

2 5
0 1
0 −13

⎞

⎟

⎠

R3 ← R3 + 13R2 ∶

⎛

⎜

⎝

2 5
0 1
0 0

⎞

⎟

⎠

R1 ← R1 − 5R2 ∶

⎛

⎜

⎝

2 0
0 1
0 0

⎞

⎟

⎠

R1 ←
1

2
R1 ∶

⎛

⎜

⎝

1 0
0 1
0 0

⎞

⎟

⎠

.

Thus, the two vectors are linearly independent. We have a zero row in
the third row, so the two vectors are spanning (though it should have
already clear that we need to append a third vector, since no list of length
2 can be spanning in R3). We append the vector [

0
0
1
] to our original

list, obtaining the list of vectors ([
2
−7
3
] , [

5
−3
1
] , [

0
0
1
]). This list is linearly

independent by the above Gaussian elimination, and is spanning by the
same sort of argument.

3. Provide a basis for C2 that is not a scalar multiple of the standard basis.
Prove that it is a basis for C2.

Solution. A simple basis which is not a scalar multiple of the standard basis is

([
1
−1
] , [

1
1
]) .

.

We form the matrix

(
1 1
−1 1

) .
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Applying Gaussian elimination to this matrix, we have

R2 ← R1 +R2 ∶ (
1 1
0 2
)

R2 ←
1

2
R2 ∶ (

1 1
0 1

)

R1 ← R1 −R2 ∶ (
1 0
0 1
)

The resulting matrix has a pivot in every row and a pivot in every column.
Consequently, the list

([
1
−1
] , [

1
1
])

is a basis of C2.

4. What is the dimension of M2,4(R)? Justify your response.

Solution. The dimension of M2,4(R) is 8. Consider can arbitrary element of M2,4(R).
We have

(
a1 a2 a3 a4
a5 a6 a7 a8

) = a1 (
1 0 0 0
0 0 0 0

) +⋯ + a8 (
0 0 0 0
0 0 0 1

) .

The list of matrices

((
1 0 0 0
0 0 0 0

) ,(
0 1 0 0
0 0 0 0

) , . . . ,(
0 0 0 0
0 0 0 1

))

of length 8 thus clearly forms a basis of M2,4(R), and consequently M2,4(R)
has dimension 8.

5. Modify the list ([ −13 ] , [ 2
−4 ] , [

3
1 ]) so that the resulting list is a basis for Z2

7.
Prove that the resulting list is a basis.

Solution. We first form the matrix

(
−1 2 3
3 −4 1

) = (
6 2 3
3 3 1

) .

Applying Gaussian elimination, we have

R1 ← 6,R1 ∶ (
1 5 4
3 3 1

) .
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R2 ← R2 − 3R1 ∶ (
1 5 4
0 2 3

)

R2 ← 4,R2 ∶ (
1 5 4
0 1 5

)

R1 ← R1 − 5R2 ∶ (
1 0 0
0 1 5

)

Thus, the reduced matrix has no pivots in its third column. Consequently,
the corresponding vector can be written as a linear combination of the
previous two corresponding vectors, and the list of vectors is currently
linearly dependent. Dropping this vector from the list, we obtain a linearly
independent list that is also spanning by the Gaussian elimination above.
Consequently, the list ([ −13 ] , [ 2

−4 ]) is a basis for Z2
7.

6. Let F be a field. Provide a basis for F. Prove that it is a basis for F. Are
there lists of elements in F which do not comprise a basis?

Solution. Let 1 denote the multiplicative identity of F. Clearly, the list (1) is linearly
independent in F (fields do not have non-zero elements a that would allow
for a ⋅ 1 = 0). The list (1) also spans F, since for any x ∈ F, x ⋅ 1 = x ∈ F.
Thus, (1) is a basis for F.

There is exactly one element of F which does not form a basis for F: the
additive identity of F, 0, since x ⋅ 0 = 0 for all x ∈ F.

7. Extend the list ([
1
−4
5
2
]) to a basis for R4. Prove that the resulting list is a

basis.

Solution. Clearly this list is not itself a basis for R4, since it has length less than
4 and thus cannot be spanning. A good candidate basis for problems in
which we only begin with one vector is to append elements of the standard
basis and check for linear independence and spanning. We form the matrix

⎛

⎜
⎜
⎜

⎝

1 0 0 0
−4 1 0 0
5 0 1 0
2 0 0 1

⎞

⎟
⎟
⎟

⎠

.

This matrix has a pivot in every row and in every column. Consequently,

the list ([
1
−4
5
2
] , [

0
1
0
0
] , [

0
0
1
0
] , [

0
0
0
1
]) spans R4 and is linearly independent in R4,

and is thus a basis for R4.

8. Show that the same three vectors from Exercise 1 form a basis of Z3
2.
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Solution. Form the matrix

⎛

⎜

⎝

1 2 2
2 1 2
2 2 1

⎞

⎟

⎠

.

Our field is Z2, and 0 = 2 mod 2. Thus, this matrix is equal to the matrix

⎛

⎜

⎝

1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

,

which clearly implies that the list of vectors forms as a basis for Z3
2.

9. Provide a list of vectors that is a basis for R2, but not for Z2
5. Prove that

it is a basis for R2, but not for Z2
5

Solution. We can leverage the properties of arithmetic modulo 5. Consider the list
of vectors ([ 10 ] , [ 15 ]) in R2. Applying Gaussian elimination to the matrix

(
1 1
0 5
)

having these vectors as its columns, we find

R1 ← −
1

5
R2 +R1 ∶ (

1 0
0 5
)

R2 ←
1

5
R2 ∶ (

1 0
0 1
) .

Consequently, these vectors form a basis for R2. However, when consider-
ing these vectors in Z2

5, we find that, modulo 5, we have the equality

(
1 1
0 5

) = (
1 1
0 0
)

which implies that the two vectors are linearly dependent, and thus cannot
comprise a basis for Z2

5.

10. (⋆) A finite dimensional vector space cannot contain an infinite dimen-
sional subspace, but can an infinite dimensional vector space contain a
finite dimensional subspace?
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Solution. Yes. As a simple example, consider the vector space of all real sequences:

R∞ = {(an)∞n=1 ∶ an ∈ R}

with vector addition and scalar multiplication defined point-wise. Clearly
this vector space is infinite dimensional, since there is no finite spanning
list of vectors in this space. However, given the subspace

U = {(an)
∞

n=1 ∈ R
∞
∶ an = 0 for n > 1}

the vector (1,0,0 . . .) ∈ U forms a linearly independent list and spans U .
Thus, U is a finite-dimensional subspace of an infinite-dimensional vector
space.

11. (⋆) Show that the list ([
k−1
k
k
k

] , [
k

k−1
k
k

] , [
k
k

k−1
k

] , [
k
k
k

k−1

]), k ∈ Z, k ≥ 1, is a

basis for R4.

Solution. Label the vectors in the list v1, v2, v3, v4 respectively. Note the following
equalities:

v2 − v1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k
k − 1
k
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k − 1
k
k
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

v3 − v1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k
k

k − 1
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k − 1
k
k
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
−1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

v4 − v1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k
k
k

k − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k − 1
k
k
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The vectors given by the differences are linearly independent. Further-
more, v1 is not in the span of these vectors. Consequently, appending v1
to this list of vectors retains the linear independence of the list. Thus,
these vectors yield a linear independent list of length 4 in R4, giving a ba-
sis. Adding v1 back to each vector in this list gives the desired conclusion.
Note that one could have also answered this question via direct Gaussian
elimination, but the "brute force" solution is often not optimal in terms
of time spent.

12. True or false: there is a spanning list of length 2 in R4. Justify your
response.

11



Solution. False. For any vector space Fn, all spanning lists must have length at least
n. In this specific case, a list of 2 ≤ 4 cannot span R4.

13. True or false: there is a linearly independent list of length 9 in R15. Justify
your response.

Solution. True. Consider the list comprising of the first nine elements of the stan-
dard basis of R15.
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