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Span and Linear Independence

2 0
. Extend the list ([’31] , [ & ]) to a spanning list of R*.

2 -5

2 0

We form a matrix with our two vectors ([ ‘31] , [ & ]) as its columns. This
2 -5

will allow us to find the "directions" in which which neither of these vectors

point. Such directions correspond precisely to the zero rows of this matrix

in REF. Form the matrix

2 0
-1 1
3 6
2 -5

1 0
1 -1 1
R1 <~ §R1 : 3 6
2 -5
1 0
1 -1 1
R1 <~ §R1 : 3 6
2 -5
1 0
0 1
R2 <~ R1 + R2 : 3 6
2 -5
1 0
0 1
Rg <« —3R1 + R3 : 0 6
2 -5



1 0
0 1
R4<——2R1+R41 0 6
0 -5
1 0
0 1
R3<——6R2+R3: 0 6
0 -5
1 0
0 1
R3<——6R2+R3~ 0 0
0 -5
1 0
0 1
R4<—5R2+R4. o ol
0 0

Thus, our missing directions correspond to the third and fourth slots in
vectors in R*. Consequently, we form the following spanning list

2 07 107 o0
(L3 FLE] L3 (8]) e
21 L] Lol LY
2. Reduce the list ([722] ; [;f] ) [é] ) [?]) to a linearly independent list in R3.

Solution. Note that no list of length greater than 3 in R? can be linearly independent,
so we know we will have to drop a vector from this list. We begin by
forming the following matrix

3 4 1 -2
-2 1 2 1].
6 3 6 1

We then apply Gaussian elimination to this matrix.

1 4/3 1/3 -2/3
Rl <~ *Rl -2 1 2 1
3 6 3 6 1

1 4/3 1/3 -2/3
Ry« Ry +2Ry:|0 11/3 8/3 -1/3
6 3 6 1



3.

Solution.

1 4/3 13 -2/3
Ry« Ry—6R.:|0 11/3 8/3 —-1/3
0 -5 4 5
1 4/3 1/3 -2/3
Row “Ry:|0 1 811 -1/11
W=No 5 14 5
L (1 0 -7/ -6/11
Ri<Ri--Ry:|0 1 s8/11 -1/11
3 \o 5 4 5
1 0 -7/11 —6/11
R3<—R3+5R25 0 1 8/11 —1/11
0 0 84/11 50/11
n (10 T 61
Ry< —Rs:|0 1 /11 -1/11
8 "o 0o 1 o252
. 10 0 -1/6
Ri<Ri+—Ry:|0 1 811 -1/11
Wl o 10 25742
. 100 -1/6
Ro«Ro- —Ry:|0 1 0 -11/21].
oo o1 2542

The fourth column of the row-reduced matrix has no pivots in its last

=27 . .
column. Consequently, the vector [ L ] is in the span of the vectors

([ 722 ] , [;11] , [ é ]) We obtain the following linearly independent list: ([ —22 ] , [ ]

Extend the list ([ —il] , [ ?2]) to a spanning list of Z3.

Note that no list of length 2 of vectors in Z3 can span Z3, thus we will
have to add a third vector. We use Gaussian elimination on the following
matrix to accomplish this. First, we form the following matrix:

2 0
4 11.
3 3

Applying Gaussian elimination, we have



R1<—3R12 4 1

3 3

1 0
R2<—R1+R21 0 1

3 3

1 0
R3 < 2R{+R3:|0 1

0 3

1 0
R3<—2R2+R3: 0 1].

0 0

Consequently, our missing direction, indicated by the zero row, is supple-
mented by the addition of the vector [?] to the list. The list ([ —21 ] , [ 7 ] , [8])

2101
thus spans Zg, as the above Gaussian elimination demonstrates.

4. Provide two different spanning lists of Z2 and prove they span Z2.
Solution. The "simplest" spanning list of Z? is

11 (0] [0

0f,]11{,]0

of 10 |1

This list is clearly spanning, since for any [gé] € Z2, we have
3

C1 1 0 0
C|l=C1 0 + Co 1 +C3 of.
C2 0_ 0 1
The next most simple spanning list is
-1 [o][o
01,[-11,10
oOjf[o -1

This list is spanning as well, since for any [Eé] € Z2, we have

C1 -1 0 0
Co | =—C1 0]+ —C2 -1+ —C3 0
Co 0 0 -1



2 1 3

5. () The vectors ([—01 ] , [0] , [%]) span a certain subspace of R? (i.e., the

i
trivial subspace, a line, a plane, or R? itself). Determine the kind of sub-

space they span. Reduce them to a span-preserving linearly independent
list (if the list is not linearly independent already).

Solution. Form the matrix

2

2 1 3
-1 0 1
0 1 5

We apply Gaussian elimination:

2 1 3

R2<—2R2+R1: 01 5

0 1 5

2 1 3

R3<—R3—R2: 0 1 5

0 0 0

2 0 -2

R1<—R1—R2: 0 1 5

0 0 O
1 1 0 -1
R1<—§R1: 01 5
0 0 O

Thus, the list is linearly dependent. In particular, the third vector can be
written as a linear combination of the first two. Thus, the given list of
vectors spans a plane in R3. We can drop the third vector from the list
and retain the span of the original list of vectors. Furthermore, dropping

the vector yields a linearly independent list by the Gaussian elimination

1

above. The final list is ([%1] , [(1)])

Bases and Dimension

1. Is the list ([%] , [%] , [%]) a basis for R3? Justify your response.

2 1

Solution. The list does form a basis for R®. We form the matrix

N DN =
N = DN
— N DN



Applying Gaussian elimination, we have

1
R2<—R2—2R1:(0
2

1
R3<—R3—2R1: 0
0
1
R3<—3R3—2R22 0
0

1 1
R3 <~ —gRg 0

R2 <~ R2 + 2R3

R1<—R1—2R3 (

O O =

1
0
0

1 0
R1<—R1—2R2 0 1
0 0

Consequently, the list does form a basis of R3, since the reduced matrix
possesses a pivot in every row (spanning) and a pivot in every column

(linearly independent).

2. Extend the list ([—27] , [—?3]) to a basis for R3. Prove that the resulting

list is a basis.

Solution. We identify the zero row via Gaussian elimination. First, we form the

matrix

2 5
-7 -3
3 1

2 2
-3 -3
2 1
2 2
-3 -2
-2 -3
2 2
-3 -2
0 -5
2
—2
2
3 0
1
0
-3 0
0 1
2 0
1 0
0 1
0
0
1
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Then, applying Gaussian elimination, we find

2 5
R2<—2R2+7R1: 0 29
3 1
2 5
R3<—2R3—3R1: 0 29
0 -13
1 2 5
RQ <~ ?RQ :10 1
2 \o -13
2 5
R3 <« R3+13Ry:|0 1
0 0

R1<—R1—5R21

O O N
o = O

1 1 0
R1<—5R13 0 1
0 0

Thus, the two vectors are linearly independent. We have a zero row in
the third row, so the two vectors are spanning (though it should have
already clear that we need to append a third vector, since no list of length

. 0 .
2 can be spanning in R3). We append the vector [0] to our original

list, obtaining the list of vectors ([—27] , [%] , [%]) This list is linearly
independent by the above Gaussian elimination, and is spanning by the
same sort of argument.

Provide a basis for C? that is not a scalar multiple of the standard basis.
Prove that it is a basis for C2.

A simple basis which is not a scalar multiple of the standard basis is

)]
L)

We form the matrix



Applying Gaussian elimination to this matrix, we have

1 1
R2<—R1+R2:(0 2)

1 1 1
R2<—2R2~(O 1)

1 0
R1<—R1—R2:(0 1)

The resulting matrix has a pivot in every row and a pivot in every column.

Consequently, the list
1 1
-1(’]1

4. What is the dimension of My 4(R)? Justify your response.

is a basis of C2.

Solution. The dimension of M5 4(R) is 8. Consider can arbitrary element of M5 4(R).
We have

a1a2a3a4_a1000+m+a0000
as ag a7 as) M0 0 0 0 810 0 0 1)

The list of matrices

10 0 0Y\(O 1 0 O 00 00
0 00 0/J°l0 0 O 0)77"’\0 0 0 1
of length 8 thus clearly forms a basis of M5 4(R), and consequently M 4(R)

has dimension 8.

5. Modify the list ([ 3'],[ 2 ],[$]) so that the resulting list is a basis for Z2.
Prove that the resulting list is a basis.

Solution. We first form the matrix

-1 2 3\ (6 2 3
3 -4 1)7{3 3 1)

Applying Gaussian elimination, we have

1 5 4
R1<—6,R11(3 3 1).
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8.

1 5 4
R2<—R2—3R13(0 2 3)

15 4
R2“4’R2:(0 1 5)

1 0 0
R1<—R1—5R23(0 1 5)

Thus, the reduced matrix has no pivots in its third column. Consequently,
the corresponding vector can be written as a linear combination of the
previous two corresponding vectors, and the list of vectors is currently
linearly dependent. Dropping this vector from the list, we obtain a linearly
independent list that is also spanning by the Gaussian elimination above.
Consequently, the list ([ 3'],[ %]) is a basis for Z2.

Let F be a field. Provide a basis for F. Prove that it is a basis for F. Are
there lists of elements in F which do not comprise a basis?

Let 1 denote the multiplicative identity of F. Clearly, the list (1) is linearly
independent in F (fields do not have non-zero elements a that would allow
for a-1=0). The list (1) also spans F, since for any 2z € F, -1 =z € F.
Thus, (1) is a basis for F.

There is exactly one element of F which does not form a basis for F: the
additive identity of IF, 0, since z-0=0 for all x € F.

1
Extend the list ([ ‘54]) to a basis for R*. Prove that the resulting list is a

) 2
basis.

Clearly this list is not itself a basis for R*, since it has length less than
4 and thus cannot be spanning. A good candidate basis for problems in
which we only begin with one vector is to append elements of the standard
basis and check for linear independence and spanning. We form the matrix

1 0 0 0
-4 1 0 0
5 0 1 0
2 0 01

This matrix has a pivot in every row and in every column. Consequently,
1 07 7107 10

the list ([ ‘54] , [(1)] , [‘1)] , [8]) spans R* and is linearly independent in R*,
2 od Lol Li

and is thus a basis for R*.

Show that the same three vectors from Exercise 1 form a basis of Z3.
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10.

Form the matrix
1 2 2
2 1 2
2 21
Our field is Zs, and 0 =2 mod 2. Thus, this matrix is equal to the matrix
1 00
0 1 0],
0 0 1

which clearly implies that the list of vectors forms as a basis for Z3.

Provide a list of vectors that is a basis for R?, but not for ZZ. Prove that
it is a basis for R?, but not for Z2

We can leverage the properties of arithmetic modulo 5. Consider the list
of vectors ([§],[%]) in R%. Applying Gaussian elimination to the matrix

o3

having these vectors as its columns, we find

0 5

1 1 0
R2<—5R2:(0 1)

Consequently, these vectors form a basis for R?. However, when consider-
ing these vectors in Z2, we find that, modulo 5, we have the equality

(b3)-G o)

which implies that the two vectors are linearly dependent, and thus cannot
comprise a basis for Z2.

1
R1<——5R2+R1 (1 0)

(*) A finite dimensional vector space cannot contain an infinite dimen-
sional subspace, but can an infinite dimensional vector space contain a
finite dimensional subspace?

10
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11.

Solution.

12.

Yes. As a simple example, consider the vector space of all real sequences:

R = {(an)p. s an € R}

with vector addition and scalar multiplication defined point-wise. Clearly
this vector space is infinite dimensional, since there is no finite spanning
list of vectors in this space. However, given the subspace

U={(an)p; €R*:a, =0 for n>1}

the vector (1,0,0...) € U forms a linearly independent list and spans U.
Thus, U is a finite-dimensional subspace of an infinite-dimensional vector
space.

k-1 k k k

() Show that the list ([ K ],[kgl],[k’jl],[ K ]), keZ, k>1,is a
k k k k-1

basis for R%.

Label the vectors in the list v, vs,v3,v4 respectively. Note the following
equalities:

k] [k-1] [t
k-1 k -1
REERRC T IO B I
k] L k] |o]
[ k] [k-1] [1]
k k
BT 1T k| T
k| L k] Lo]
k] [k-1] [1]
k k 0
R IO B R B
k-1 | k] |-

The vectors given by the differences are linearly independent. Further-
more, v; is not in the span of these vectors. Consequently, appending v
to this list of vectors retains the linear independence of the list. Thus,
these vectors yield a linear independent list of length 4 in R*, giving a ba-
sis. Adding vy back to each vector in this list gives the desired conclusion.

Note that one could have also answered this question via direct Gaussian
elimination, but the "brute force" solution is often not optimal in terms
of time spent.

True or false: there is a spanning list of length 2 in R*. Justify your
respouse.

11



Solution. False. For any vector space F", all spanning lists must have length at least
n. In this specific case, a list of 2 <4 cannot span R*.

13. True or false: there is a linearly independent list of length 9 in R'5. Justify
your response.

Solution. True. Consider the list comprising of the first nine elements of the stan-
dard basis of R*®.

12
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