
Elementary Matrices and Matrix Invertibility

Christian B. Hughes

BIE-LA1 - Winter 2025

Contents
1 Matrix Invertibility 1

1.1 Matrices as Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matrix Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Elementary Matrices 3
2.1 Types of Elementary Matrices . . . . . . . . . . . . . . . . . . . . . 3
2.2 Gaussian Elimination as Matrix Multiplication . . . . . . . . . . . 3
2.3 Computation of Matrix Inverses . . . . . . . . . . . . . . . . . . . . 6
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Matrix Invertibility

1.1 Matrices as Linear Maps
We have employed matrices as tools in our investigation of properties of finite-
dimensional vector spaces for a few weeks now, but almost exclusively in that
capacity; we have yet to explore the structural properties of matrices themselves
in depth. We do so now, beginning with the necessary elements of the general
theory of linear maps on finite-dimensional vector spaces, which will inform our
knowledge of matrix properties.

Let V and U be finite dimensional vector spaces over the field F, and let
T ∶ V → U be a map satisfying the following properties:

1. For all v, u ∈ V , T (v + u) = T (u) + T (v).
2. For all c ∈ F, T (cv) = cT (v).

Recall that, for any n×m matrix M over the field F, and for any vector v ∈ Fm,
we have Mv ∈ Fn. One can thus identify M as a function from Fm to Fn

Furthermore, any m × n matrix of this form satisfies the two properties above
(this is left as an exercise), and thus matrices are not only functions, but a
special kind of function: a linear map.
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Remark 1.1. One might wonder why this "linearity" idea seems to pervade the
subject of "linear algebra." Aside from being the namesake of the subject, linear
maps are more or less core to all human technology. Continuous objects are
often extremely difficult or impossible to model practically, and thus we resort
to local linear approximations (linear functions often described by matrices) of
phenomena we wish to model. Want to understand the local effects of the EM
field on a complicated machine? Derivatives and a matrix. Want to build a
bridge? Derivatives and a matrix. More on this in LA2, MA1, and MA2.

1.2 Matrix Invertibility
Given that matrices are special kinds of functions on vector spaces, it is natural
to ask when such functions are invertible. Recall that a general function f ∶
A → B is invertible if and only if there exists a function g ∶ B → A such that
g ○ f = idA for all x ∈ A, where idA denotes the identity function on A.

We will restrict ourselves to Mn(F) for the time being. Viewing matrix
multiplication as function composition (a notion to which we will return to
later), we would like to explicitly provide a similar notion of invertibility in this
context.

A matrix A ∈Mn(F) is invertible if and only if there exists a (not necessarily
distinct) matrix B ∈Mn(F) such that AB = BA = In, where In denotes the n×n
matrix with the multiplicative identity of F along its main diagonal, with the
additive identity of F in every other entry. A matrix A with an inverse is called
invertible, and its inverse is denoted by A−1.

Given a matrix A ∈ Mn(F), if there exists a matrix B such that BA = In,
we call B a left inverse for A. Similarly, if there exists a matrix B such that
AB = In, we say that B is a right inverse for A.

We can deduce the following two propositions from these definitions, which
are provided without proof.

Proposition 1.1. If a matrix is invertible, then it is a square matrix.

Proposition 1.2. If a matrix is invertible on the right (resp. left), then the
matrix is invertible on the left (resp. right) by the same inverse.

Recall that a function is invertible iff there is an exact one-to-one correspondence
between its domain and codomain. However, by the linearity of matrices, we are
asking something more of our maps between vector spaces: that they somehow
"preserve" the structure of the vector spaces.

Thus, the intuition for Proposition 1.1 is that, despite the fact that Card(R) =
Card(R2)1, and hence that there is a bijection between R and R2, asking for a
structure-preserving bijection between these sets as vector spaces puts too many
constraints on such a bijection, and is not possible; we need the same number
of dimensions to work with in both the domain and codomain to obtain a linear
map (matrix) between them which is invertible.

1Here, "Card" denotes cardinality.
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As a natural consequence of the definition of invertibility, we have the fol-
lowing proposition.

Proposition 1.3. Let A and B be invertible matrices. Then (AB)−1 = B−1A−1.
Proof. For AB, we have (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 =
I.

1.3 Exercises
1. Find the formula for the inverse of a product of n ∈ N invertible matrices.

2. Provide an example of a non-invertible matrix.

3. Would the property of non-invertibility of n ×m matrices, n ×m, change
with a particular choice of field? If so, which field? If not, why not?

4. Provide an example of an invertible matrix.

5. (⋆) What if we dropped the word "field" in Question 3 and replaced it
with some other kind of structure?

2 Elementary Matrices
Until now, we have viewed matrices in Gaussian elimination as a convenient tool,
but nothing more. However, in an effort to better understand why Gaussian
elimination works, we would like to link the process of Gaussian elimination
itself to the notions we have developed so far. We do this via the multiplication
of elementary matrices.

2.1 Types of Elementary Matrices
Recall that we have three fundamental row operations in Gaussian elimination:

1. Multiplication of a row by a (nonzero) scalar;

2. Interchange of rows;

3. Addition of one row to another.

We will now associate matrices to each of these operations.

2.2 Gaussian Elimination as Matrix Multiplication
Suppose we have the n × n matrix M over the field F, and we would like to
multiply the ith row, i < n, of M by c ∈ F. Concretely, we can write
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M =
⎛
⎜⎜⎜⎜⎜
⎝

a1,1 ⋯ a1,n
⋮ ⋮

ai,1 ⋯ ai,n
⋮ ⋮

an,1 ⋯ an,n

⎞
⎟⎟⎟⎟⎟
⎠
.

Pay special attention to the indices of the entries of M ; despite the rectangular
appearance in its formatting here, M is square.

Now consider the matrix E1:

E1 =
⎛
⎜⎜⎜⎜⎜
⎝

1 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮
0 ⋯ c ⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 1

⎞
⎟⎟⎟⎟⎟
⎠

where c occurs in the ith row and ith column of E1, with ones along the rest of
the main-diagonal entries, with zeros everywhere else. We obtain

E1M =
⎛
⎜⎜⎜⎜⎜
⎝

a1,1 ⋯ a1,n
⋮ ⋮

cai,1 ⋯ cai,n
⋮ ⋮

an,1 ⋯ an,n

⎞
⎟⎟⎟⎟⎟
⎠
.

Consequently, matrices in the form of E1, when multiplied by a matrix
from the left, correspond to row-scalar multiplication operation of Gaussian
elimination.

Now suppose we would like to exchange two rows m1 and m2 of M instead.
We consider the n × n matrix E2 such that the following equation holds for the
entries ei,j of E, 1 ≤ i, j ≤ n:

ei,j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i = j and i ∉ {m1,m2},
1 if (i, j) = (m1,m2) or (i, j) = (m2,m1),
0 otherwise.

To make this intuitive, we provide an example.

Example 2.1. Suppose we have the matrix

M =
⎛
⎜
⎝

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞
⎟
⎠
.

We would like to swap rows 1 and 3. Employing the definition of E2, we find

E2 =
⎛
⎜
⎝

0 0 1
0 1 0
1 0 0

⎞
⎟
⎠
.
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Thus,

E2M =
⎛
⎜
⎝

0 0 1
0 1 0
1 0 0

⎞
⎟
⎠
⎛
⎜
⎝

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞
⎟
⎠
=
⎛
⎜
⎝

a3,1 a3,2 a3,3
a2,1 a2,2 a2,3
a1,1 a1,2 a1,3

⎞
⎟
⎠
.

Finally, we consider the elementary matrix E3 corresponding to the Gaussian
elimination step of adding a (nonzero) multiple of one row to another. Suppose
we would like to represent the row operation Rm1 ← Rm1 + cRm2 , where c is
some scalar in the underlying field. Define E3 as the n × n matrix with entries
ei,j , 1 ≤ i, j ≤ n, such that

ei,j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i = j,
c if (i, j) = (m1,m2),
0 otherwise.

Informally, this matrix is the identity everywhere, except for (m1,m2), in which
we place c.

Example 2.2. Consider the matrix

M = (a1,1 a1,2
a2,1 a2,2

) .

We would like to perform the Gaussian elimination operation R2 ← R2 + 3R1.
We form the matrix

E3 = (1 0
3 1
) .

Multiplying these matrices, we find that

E3M = (1 0
3 1

)(a1,1 a1,2
a2,1 a2,2

) = ( a1,1 a1,2
3a1,1 + a2,1 3a1,2 + a2,2) ,

as desired.

The following proposition will prove useful for explicitly computing matrix in-
verses.

Proposition 2.1. The elementary matrices E1, E2, E3
2 are invertible.

Proof. See Exercise 2.4.3.
2Note that the notation E1, E2, and E3 for the three elementary matrices is not universally

standard.
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2.3 Computation of Matrix Inverses
We now leverage our results concerning elementary matrices to obtain a method
for computing matrix inverses. First, suppose that we have some n × n matrix
A, and that A can be reduced to the identity matrix I in p Gaussian elimination
steps. Denote the ith elementary matrix in this sequence of steps by Ei. Then

I = EpEp−1⋯E1A.

Taking the inverse of both sides, we have

(I)−1 = (EpEp−1⋯E1A)−1 = A−1E−11 ⋯E−1p−1E−1p .

Solving for A−1 by multiplying both sides by the p elementary matrices, we
obtain

EpEp−1⋯E1 = EpEp−1⋯E1I = A−1.
Consequently, we observe that, if A can be row-reduced to the identity matrix,
A−1 can be recovered by multiplying the elementary matrices corresponding to
the Gaussian elimination steps that row-reduced A.

This leads us to the following proposition

Proposition 2.2. A matrix is invertible if and only if it can be row-reduced to
the identity matrix.

Proof. See Exercise 2.4.4.

In practice, when row reduce an augmented matrix, we apply the row operations
to the augmented column vector as well. Thus, if we augment our matrix with
the entire identity matrix, all row operations used to reduce our augmented
matrix to the identity will be applied to the identity matrix, recovering our
matrix inverse.

Example 2.3. Consider the matrix

A =
⎛
⎜
⎝

2 1 1
1 3 2
1 0 0

⎞
⎟
⎠
.

We augment with the identity matrix and apply Gaussian elimination:

⎛
⎜
⎝

2 1 1 1 0 0
1 3 2 0 1 0
1 0 0 0 0 1

⎞
⎟
⎠
.

R1 ↔ R2 ∶
⎛
⎜
⎝

1 3 2 0 1 0
2 1 1 1 0 0
1 0 0 0 0 1

⎞
⎟
⎠
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R2 ← R2 − 2R1 ∶
⎛
⎜
⎝

1 3 2 0 1 0
0 −5 −3 1 −2 0
1 0 0 0 0 1

⎞
⎟
⎠

R3 ← R3 −R1 ∶
⎛
⎜
⎝

1 3 2 0 1 0
0 −5 −3 1 −2 0
0 −3 −2 0 −1 1

⎞
⎟
⎠

R3 ← R3 − 3

5
R2 ∶

⎛
⎜
⎝

1 3 2 0 1 0
0 −5 −3 1 −2 0
0 0 − 1

5
− 3

5
1
5

1

⎞
⎟
⎠

R3 ← −5R3 ∶
⎛
⎜
⎝

1 3 2 0 1 0
0 −5 −3 1 −2 0
0 0 1 3 −1 −5

⎞
⎟
⎠

R1 ← R1 − 2R3 ∶
⎛
⎜
⎝

1 3 0 −6 3 10
0 −5 −3 1 −2 0
0 0 1 3 −1 −5

⎞
⎟
⎠

R2 ← R2 + 3R3 ∶
⎛
⎜
⎝

1 3 0 −6 3 10
0 −5 0 10 −5 −15
0 0 1 3 −1 −5

⎞
⎟
⎠

R2 ← −1
5
R2 ∶

⎛
⎜
⎝

1 3 0 −6 3 10
0 1 0 −2 1 3
0 0 1 3 −1 −5

⎞
⎟
⎠

R1 ← R1 − 3R2 ∶
⎛
⎜
⎝

1 0 0 0 0 1
0 1 0 −2 1 3
0 0 1 3 −1 −5

⎞
⎟
⎠

We have reduced A to the identity, and its inverse is the matrix left in the
augmented segment of the augmented matrix. That is,

A−1 =
⎛
⎜
⎝

0 0 1
−2 1 3
3 −1 −5

⎞
⎟
⎠
.

2.4 Exercises
1. Use Gaussian elimination to compute the inverse of

A =
⎛
⎜⎜⎜
⎝

1 −1 2 0
0 3 −1 4
2 0 1 −3
1 2 0 1

⎞
⎟⎟⎟
⎠
.

If A is not invertible, explain why.
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2. Use Gaussian elimination to compute the inverse of

A =
⎛
⎜
⎝

1 2 3
2 5 8
3 7 11

⎞
⎟
⎠
.

If A is not invertible, explain why.

3. Prove Proposition 2.1.

4. Show Proposition 2.2.

5. Compute the inverse for

A =
⎛
⎜
⎝

1 1 0
0 1 1
1 0 1

⎞
⎟
⎠

and write the elementary matrices corresponding to the Gaussian elimi-
nation steps used in your row reduction.

Bonus. Determine the probability of a uniformly random matrix in M2(R) being
invertible.
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