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1 Vector (sub)spaces

1.1 Vector Spaces
We have already observed that vector spaces are "well-behaved." In particular,
they are closed under addition and scalar multiplication, and these operations
behave as expected (i.e., they are commutative, associative, and possess dis-
tributive properties). Formally:

Let V be a vector space over the field F. Then the following properties hold.

1. (Commutativity.) For all x, y ∈ V , x + y = y +x

2. (Associativity.) For all x, y, z ∈ V , (x + y) + z = x +(y + z)

3. (Additive identity.) There exists a unique element 0 ∈ V such that for
all v ∈ V , v + 0 = 0 + v = v.

4. (Closure under addition.) For all x, y ∈ V , x + y ∈ V .

5. (Additive inverse.) For all x ∈ V , there exists a unique y ∈ V such that
x + y = y + x = 0. We denote this additive inverse y by −x.
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The following properties concern the field F and its interaction with V .
Note that fields are guaranteed to have unique additive and multiplicative
inverses, as well as unique additive and multiplicative identities, typically
denoted by 0 and 1 respectively.

6. (Closure under scalar multiplication.) For all x ∈ V and for all a ∈ F,
ax ∈ V .

7. (Multiplicative identity.) For all x ∈ V , 1 ⋅ x = x ⋅ 1 = x.

8. (Multiplicative associativity.) For all a, b ∈ F and for all x ∈ V , a(bv) =
(ab)v.

9. (Distributivity.) For all x, y ∈ V and for all a, b ∈ F, a(x + y) = ax + ay
and (a + b)(x) = ax + bx.

Elements of V are called vectors. Elements of F are called scalars.
If you do not recall the formal definition of a field, do not worry; a field is simply
a set equipped with multiplication and addition operations that behave nicely
together (i.e., distributivity, commutativity, associativity, existence of 0, 1, and
the existence of additive/multiplicative inverses for every element in the set).
You can think of the properties of R or Q as examples. Note that a field need
not be infinite (e.g., Z3, the integers modulo 3).

It is natural to think of the field F as "acting"1 on V . Concretely, this
means that the addition on V comes from "within" V itself, while the scalar
multiplication comes from F. This is why we were able discuss the properties of
addition on V prior to considering F. It is also why Property 8 above allows us
to multiply scalars in F prior to involving vectors at all.

In general, scalar multiplication, vector addition, and their interaction heav-
ily depend on what F and V are and how we wish for them to behave together.
In this course, all of our vector spaces will be "the same"2 as Fn, so scalar
multiplication and vector addition are defined entry-wise.

Remark 1.1. The term "scalar" comes from the Latin term "scalaris," which
describes the attribute of belonging to a ladder (a "scala"). Vector derives from
the Latin verb "vehere," which means to possess or to carry.

We now discuss a few examples

Example 1.1 (Rn). Consider the set of column n-tuples [
a1⋮
an
] ai ∈ R, 1 ≤ i ≤ n

with addition and scalar multiplication defined entry-wise. This set with these
operations over the scalar field R form the vector space Rn. We exhibit these

operations explicitly. Let v = [
a1⋮
an
] and u = [

b1⋮
bn
], with the ai and bi in R. Let

c ∈ R be a scalar. Then
1The word "action" has a precise mathematical meaning here. For the curious, see "module

over a field."
2The phrase "the same" here refers to the term "vector space isomorphism."
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v + u =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
⋮

an

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1
⋮

bn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1 + b1
⋮

an + bn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

c ⋅ v = c ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
⋮

an

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ca1
⋮

can

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Remember to be aware of where operations are taking place. In Example
1.1, the sum v + u uses the addition defined on Rn between vectors, while the
sum ai + bi in each entry uses the addition between scalars of the field R.

Example 1.2 (M2(Z5)). Denote by M2(Z5) the set of 2 × 2 matrices with
entries in Z5 (the integers modulo 5). Define addition and scalar multiplication
of these matrices entry-wise, with the scalar field being Z5.

We check closure under addition and scalar multiplication here; the verifi-
cation of the rest of the vector space properties (e.g., unique additive identity,
distributivity, and so on) are left as an exercise.

Consider arbitrary matrices A,B ∈M2(Z5),

A = [
a1 a2
a3 a4

] , B = [
b1 b2
b3 b4

] .

Taking their sum, which is defined by summing entry-wise, we see

A +B = [
a1 + b1 a2 + b2
a3 + b3 a4 + b4

] .

Since each entry is a sum of elements in Z5, each entry is also in Z5 (recall
that this holds because Z5 is a field, and fields are closed under addition). Thus,
M2(Z5) is closed under addition.

Similarly, consider a scalar c ∈ Z5. Then

c ⋅A = [
c ⋅ a1 c ⋅ a2
c ⋅ a3 c ⋅ a4

] .

The entries c ⋅ai, 1 ≤ i ≤ 4 of this matrix are products of elements of Z5, and Z5

is closed under multiplication, so c ⋅A is also in M2(Z5).

Note that Examples 1.1 and 1.2 generalize. Specifically, if F is any field
and n ≥ 1, then Fn over F is always a vector space with the operations defined
entry-wise. Similarly, Mn(F) over F is always a vector space with the operations
defined entry-wise. In particular, F1 = F is a vector space. That is, fields are
vector spaces (but the converse is not necessarily true).

In general, the verification of whether a given set with scalar multiplication
and addition is a vector space or not is time-consuming given the number of
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properties to check, but quick checks can disqualify a set from being a vector
space. For example, if scalar multiplication does not use a field (e.g., Z), then
the set with such a scalar multiplication defined on it cannot possibly be a vector
space.

1.2 Vector Subspaces
In many cases, understanding the structure of certain subsets of a vector space
can aid in understanding the entire space. Heuristically, it makes sense that
isolating a smaller or "simpler" part of a larger object, still retaining all of
the relevant properties of the larger object, should aid in understanding the
structure of the larger whole. This idea appears in many places in mathematics,
but in our setting, it manifests as the notion of a vector subspace.

Formally, a vector subspace is the following.

Definition 1.1 (Vector subspace). Let V be a vector space over the field F. Let
S ⊂ V , S ≠ ∅. Suppose that S has the following properties:

1. For all x, y ∈ S, x + y ∈ S.

2. For all x ∈ S and for all c ∈ F, c ⋅ x ∈ S.

Then we call S a vector subspace of V , or simply a subspace of V when the
vector space setting is understood.

Remark 1.2. Some authors add the additional requirement that 0 ∈ S. In the
vector space setting, this is redundant. Indeed, choosing 0 ∈ F and some x ∈ V ,
we have x ⋅ 0 = 0 ∈ S by the second property.

We provide a criterion for a subset of a vector space to be a vector subspace.

Proposition 1.1 (Subspace criterion). Let V be a vector space over the field
F. Then S ⊂ V , S ≠ ∅, is a subspace of V if and only if for all x, y ∈ S and for
all c ∈ F, x + cy ∈ S.

Proof. First, suppose S is a subspace of V . Choose x, y ∈ S and c ∈ F. Then
cy ∈ S since subspaces are closed under scalar multiplication, and x+cy ∈ S since
vector spaces are closed under addition. Now suppose S satisfies the subspace
criterion. Choose again x, y ∈ S. Selecting c = 1, we have x + y ∈ S, which gives
us the first condition in the definition of a subspace. Next, choosing x = 0, we
have cy ∈ S, giving us the second condition.

For every vector space V , we can immediately identify two subspaces of V .
Firstly, V ⊂ V is a subspace of V . Secondly, one can (and should) verify that
{0} ⊂ V is a subspace of V . The latter subspace is called the trivial subspace of
V .
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Remark 1.3. In Definition 1.1 and Proposition 1.1, we specified that S ≠ ∅.
One might wonder why this was necessary. This condition is actually neces-
sitated by the definition of a vector space. We require S to possess a unique
additive identity 0, but if S were empty, no such element would exist in S.
Henceforth, we shall assume that such S are nonempty, bearing this technicality
in mind.

We conclude this section with examples and non-examples of vector sub-
spaces.

Example 1.3. Consider the vector space R3 and the set

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a3 = 0

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

The set S is a subspace of R3. Indeed, let v = [
a1
a2
0
] ∈ S and u = [

b1
b2
0
] ∈ S. We

have

v + u =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1
b2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1 + b1
a2 + b2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ S.

We verify closure under scalar multiplication similarly. Let c ∈ R. Then

c ⋅ v = c ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c ⋅ a1
c ⋅ a2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ S.

Consequently, S is a subspace of R3.

Example 1.4. Consider the first octant of R3 defined by

U =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a1, a2, a3 ≥ 0

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

This set is not a subspace of R3. Setting v = [
a1
a2
a2
] ∈ S and u = [

b1
b2
b3
] ∈ S, we have

v + u =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1
b2
b3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1 + b1
a2 + b2
a3 + b3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Note that v + u is in S, so S is closed under addition. However, choose c ∈ R
with c < 0. Then

c ⋅ v = c ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ca1
ca2
ca3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Thus c ⋅ v is not in U , since all entries of c ⋅ v are negative for choices of
negative c. Consequently, U is not closed under scalar multiplication, and is not
a subspace of R3.

Example 1.5. Consider the vector space C3 and the set

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ C3
∶ a1, a2, a3 ∈ R

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

The set S is not a vector subspace of C3. Indeed, choose i ∈ C. Let v = [
a1
a2
a2
] ∈ S.

Then

i ⋅ v = i ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1i
a2i
a3i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∉ S.

Consequently, S fails to be closed under scalar multiplication, and is thus
not a subspace of C3.

Example 1.6. Consider the vector space R2 and the subset

S = {[
a1
a2
] ∈ R2

∶ a1 = 2a2} .

The subspace criterion proves useful here. Consider v = [ a1
a2 ] ∈ S and u =

[ b1b2 ] ∈ S. Let c ∈ R. Then

v + cu = [
a1
a2
] + c ⋅ [

b1
b2
] = [

2a2
a2
] + [

2cb2
cb2
] = [

2(a2 + cb2)
a2 + cb2

] ∈ S.

Thus, by Proposition 1.1, S is a subspace of R2.

1.3 Exercises
Exercises that require more creativity or deeper reasoning are marked with a ⋆.
The bonus question is simply for fun, and does not concern required material
for this course.

1. Is

S = {[
a1
a2
] ∈ R2

∶ a1 = −a2}

a subspace of R2? Justify your answer with rigorous reasoning.

2. Is

S = {[
a1
a2
] ∈ R2

∶ a2 = a
2
1}

a subspace of R2? Justify your answer with rigorous reasoning.
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3. (⋆) Describe a nontrivial subspace of C2 over the field R that is not simply
the restriction of some entries to 0. Prove it is a subspace.

4. Choose your favorite vector

v = [
a1
a2
] ∈ R2.

Can you describe a nontrivial vector subspace of R2 containing v?

5. (⋆) Show that every line passing through the origin of R2 (i.e., containing
the zero vector) is a subspace of R2.

6. Why is S = {[
a1
a2
] ∈ Z2

5 ∶ a1, a2 are odd modulo 5} not a subspace of Z2
5?

7. Let F be a field (and thus a vector space). What are the subspaces of F?

8. Is

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a3 = a1 − a2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

a subspace of R3? Justify your answer with rigorous reasoning.

9. Is

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a2 = 4a3, a1 = −2a2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

a subspace of R3? Justify your answer with rigorous reasoning.

10. Is

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a1 + 2a2 + 4a3 = 5

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

a subspace of R3? Justify your answer with rigorous reasoning.

Bonus. Let
P3(x) = {a0 + a1x + a2x

2
+ a3x

3
∶ a0, a1, a2, a3 ∈ R}

be the set of polynomials of degree at most 3 in x with real coefficients.
This set is a vector space with addition and scalar multiplication defined
the usual way. Show that the set S = {p ∈ P3(x) ∶ p has degree at most 1}
is a subspace of P3(x).

7



2 Span and Linear Independence

2.1 Span
We have witnessed many examples of vector subspaces, but these were already
provided to us. One might ask how vector subspaces arise naturally from a
given vector space. This leads us to the notion of linear combinations and span.

Definition 2.1 (Linear combination). Let V be a vector space over the field
F. Let {v1, . . . , vn} be a finite list of vectors in V . A linear combination of
{v1, . . . , vn} is a vector of the form

c1v1 +⋯ + cnvn, ci ∈ F, 1 ≤ i ≤ n.

Intuitively, one can picture a linear combination vector as a weighted sum
describing "how much" of each vector in the list it "contains." For example,
consider the list {[ 10 ] , [ 01 ]} of vectors in R2. The linear combination

5 ⋅ [
1
0
] + 7 ⋅ [

0
1
] = [

5
7
]

can be interpreted as describing a vector containing five instances of [ 10 ] and
seven instances of [ 01 ]. Since these vectors are in R2, we can visualize their
linear combination above as five steps along the horizontal axis of the plane and
seven steps along the vertical axis of the plane.

Remark 2.1. While visual-spatial reasoning can be helpful for building base
intuition or for reasoning about problems in R/R2/R3/C, it is important not to
rely on it in general, as there are very few vector spaces which can be visualized
in the fashion above3.

Naturally, we would like to see if, given such a list of vectors in a vector space,
the set of all such linear combinations of that list has any sort of structure. This
leads us to the following definition and proposition.

Definition 2.2 (Span). Let V be a vector space over the field F. Let {v1, . . . , vn}
be a finite list of vectors in V . We define

span{v1, . . . , vn} ∶= {c1v1 +⋯ + cnvn ∈ V ∶ ci ∈ F, 1 ≤ i ≤ n}.

In other words, the span of a list of vectors is the set of all linear combinations
of the vectors in that list. As an immediate consequence of this definition, we
have the following proposition

Proposition 2.1. Let V be a vector space. Let {v1, . . . , vn} be a list of vectors
in V . Then span{v1, . . . vn} is a subspace of V . In particular, it is the smallest4

subspace of V containing {v1, . . . , vn}.
3There are creative methods for visualizing certain subsets of spaces like C2. See "domain

coloring" for more.
4There are many ways to be "small" in mathematics. In this case, we mean inclusion-wise.

That is, every subspace S of V containing {v1, . . . , vn} also contains span{v1, . . . vn}.
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The proof of this proposition is left as an exercise, as it is obtained from
a direct application of the definitions of subspace and span. We now provide
examples of vector spaces obtained from spans of lists of vectors.

Example 2.1. Consider the list {[
1
0
0
] , [

0
1
0
] , [

0
0
1
]} of vectors in R3, and consider

an element v ∈ span{[
1
0
0
] , [

0
1
0
] , [

0
0
1
]}. The vector v is of the form

v = c1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c2 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c3 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, c1, c2, c3 ∈ R.

Notice that the set of all such v is exactly the set of vectors R3. Consequently,
we say that {[

1
0
0
] , [

0
1
0
] , [

0
0
1
]} spans R3.

The vectors [
1
0
0
] , [

0
1
0
] , [

0
0
1
] are called the standard basis vectors for R3, and

they are denoted by e1, e2, and e3. The notation and terminology for Rn is
analogous. We will return to the term "basis" later.

Intuitively, one can view e1, e2, and e3 as representing the directions of the
standard coordinate axes in R3; any vector in R3 can be obtained by "moving"
the appropriate distance along each coordinate axis.

Example 2.2. Consider the list {[
1
0
2
] , [

0
1
1
]} of vectors in R3, and consider an

element v ∈ span{[
1
0
2
] , [

0
1
1
]}. The vector v is of the form

v = c1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c2 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2

2c1 + c2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The collection of all such vectors forms a plane in R3.

So far, we have asked what the span of a list of vectors looks like as a
subspace, and what kinds of vectors are in that subspace. A natural question
arises in the other direction: given a list of vectors {v1, . . . , vn} in a vector
space V over the field F, how can we determine when a vector u ∈ V is in
span{v1, . . . , vn}? Gaussian elimination proves itself to be an effective tool to
answer this question.

Write

u =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u1

⋮

un

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, vi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v
(1)
i

⋮

v
(n)
i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for u ∈ V and vi ∈ {v1, . . . , vn} ⊂ V . If u ∈ span{v1, . . . , vn}, then

u =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u1

⋮

un

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v11c1 + v
1
2c2 +⋯ + v

1
ncn

⋮

vn1 c1 + v
n
2 c2 +⋯ + v

n
ncn

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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for some choice of scalars ci ∈ F, 1 ≤ i ≤ n. Rewriting the latter matrix as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v11c1 + v
1
2c2 +⋯ + v

1
ncn

⋮

vn1 c1 + v
n
2 c2 +⋯ + v

n
ncn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= A

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where A is the coefficient matrix of the vji , we see that asking if u ∈ span{v1, . . . , vn}
is the same as asking whether the system of equations described by

u =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u1

⋮

un

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= A

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

has a solution.

Example 2.3. Consider the list of vectors {[
5
0
2
] , [

0
1
0
] , [

−10
0−2 ]} in R3. Is [

3
2−5 ] ∈

span{[
5
0
2
] , [

0
1
0
] , [

−10
0−2 ]}?

Constructing the augmented matrix for this system, we obtain

⎛
⎜
⎝

5 0 −10 ∣ 3

0 1 0 ∣ 2

2 0 −2 ∣ −5

⎞
⎟
⎠

.
Gaussian elimination yields

R1 ← R1 − 2R3 ∶
⎛
⎜
⎝

1 0 −6 ∣ 13

0 1 0 ∣ 2

2 0 −2 ∣ −5

⎞
⎟
⎠

R3 ← R3 − 2R1 ∶
⎛
⎜
⎝

1 0 −6 ∣ 13

0 1 0 ∣ 2

0 0 10 ∣ −31

⎞
⎟
⎠

R3 ←
1
10
R3 ∶
⎛
⎜
⎝

1 0 −6 ∣ 13

0 1 0 ∣ 2

0 0 1 ∣ − 31
10

⎞
⎟
⎠

R1 ← R1 + 6R3 ∶
⎛
⎜
⎝

1 0 0 ∣ − 28
5

0 1 0 ∣ 2

0 0 1 ∣ − 31
10

⎞
⎟
⎠

.
Consequently, [

3
2−5 ] ∈ span{[

5
0
2
] , [

0
1
0
] , [

−10
0−2 ]}, with

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3
2
−5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −28/5 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5
0
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 2 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− 31/10 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−10
0
−2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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2.2 Linear Independence
A natural question is whether a vector in the span of a list of vectors can be
uniquely represented as a linear combinaton of the list of vectors. This leads us
to the following notion.

Definition 2.3 (Linearly (in)dependent list). Let V be a vector space over the
field F. Let (v1, . . . , vn) be a list of vectors in V . The list (v1, . . . , vn) is said to
be linearly independent if the only choice of a1, . . . , an ∈ F such that

a1v1 +⋯ + anvn = 0

is a1 = ⋯ = an = 0.
If (v1, . . . , vn) is not linearly independent, it is said to be linearly dependent.

Remark 2.2. Note that the empty list is considered to be linearly independent.

Example 2.4. Consider the list of vectors ([ 20 ] , [ 70 ]) in R2. These vectors are
linearly dependent, since

[
0
0
] = −7/2 ⋅ [

2
0
] + 1 ⋅ [

7
0
] ,

and thus there is a non-zero choice of c1, c2 such that the linear combination of
these vectors with these coefficients is zero.

The definition of linear independence leads us to the following proposition

Proposition 2.2 (Uniqueness of coefficients). Let V be a vector space over the
field F, and let (v1, . . . , vn) be a linearly independent list of vectors in V . Let
v ∈ V . Then there exists a unique choice of c1, . . . , cn ∈ F such that

v = c1v1 +⋯ + cnvn.

The proof of this proposition is once again left as an exercise, and you are
highly encouraged to attempt the proof. As a hint, we remind the reader that
most proofs concerning uniqueness of algebraic objects proceed by contradiction.

The process for determining whether a given list of vectors is linearly in-
dependent is analogous to that of determining whether a given vector rests in
the span of a list of vectors. Let V be a vector space over the field F. Let
{v1, . . . , vn} be a list of vectors in V , and write

vi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v
(1)
i

⋮

v
(n)
i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, vji ∈ F, 1 ≤ i, j ≤ n.

Asking if the list of the vi is linearly independent is equivalent to asking if
the the only choice of c1, . . . , cn ∈ F such that the following equality holds is
c1 = ⋯ = cn = 0.

11



⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v11c1 + v
1
2c2 +⋯ + v

1
ncn

⋮

vn1 c1 + v
n
2 c2 +⋯ + v

n
ncn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Intuitively5, a list of vectors is linear independent when each vector in the
list contributes in a "direction" that the other vectors do not. In the case
of Example 2.4, both vectors only contributed or "pointed" horizontally, and
neither vertically, and consequently they were linearly dependent. While this
visual intuition breaks down in spaces with more than three entries, the algebraic
intuition (i.e., observing how each vector contributes to each entry) holds.

We now provide an example of a linearly independent list of vectors and note
how to identify linear independence in such simple cases.

Example 2.5. Consider the list of vectors {[
1
0−1 ] , [

0
5
0
] , [

−10
0
0
]} in R3. Before

immediately applying Gaussian elimination, we should use our intuition to form
an understanding of this list. Immediately, we can see that, since only the second
vector has a non-zero second entry, its coefficient in any linear combination of
the list equaling zero must be itself zero.

Thus, we now need only consider the first and third vectors in the list. In a
linear combination of these vectors totaling zero, we require that the third entry
of the combination is also zero, and this is only achieved when the first vector
in this list has coefficient zero in the linear combination.

This leaves us with the question of whether any non-zero scalar makes the
third vector zero, and the answer to that question is clearly no.

Thus, all coefficients are forced to be zero, and the list is linearly independent.

Note that in Example 2.5, we determined linear independence merely using
our intuition and knowledge of linear independence. This solution saved us time,
and if written carefully, would constitute an adequately reasoned solution. In
sum, we can leverage our algebraic intuition to determine linear independence
for sufficiently "small"6 vector spaces. Note that this approach would be ill-
suited for "larger" spaces, say, R10100 .

2.3 Exercises
1. Is the list of vectors

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5
−2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

7
0
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

in R3 linearly independent? Justify your response.
5We will formalize this intuition next week when we discuss dimension.
6The question of what it means for a space to small is actually quite broad. In linear

algebra, we often mean "algebraic dimension," in which case Q3 and R3 are the same "size."
However, if we consider size from a "volume" perspective, Q3 has volume 0, and is small in
R3. If we consider size from a distance perspective, Q3 is suddenly large in R3 again, and
actually "fills" R3.
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2. Is the list of vectors
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4
2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
2
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

in Z3
5 linearly independent? Justify your response.

3. Describe the set

span
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
1
−3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5
1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

What geometric figure in R3 does it form?

4. Is
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
4
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ span
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3
3
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

where all vectors are in Z3
5? Justify your response.

5. Identify a vector v in R3 such that when v is added to the list

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

6
−5
7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

the resultant list is linearly independent.

6. Is
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4
3
−5
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ span

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
−6
2
−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
−9
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
5
−3
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,

where all vectors are in R4? Justify your response.

7. (⋆) Show that, for any list {v1, . . . vn} of vectors in a vector space V ,
span{v1, . . . vn} is the smallest (inclusion-wise) subspace of V containing
{v1, . . . vn}.

8. Give an example of a list of vectors in R3 which is linearly dependent.
Find some v in the span of the list such that there are two distinct linear
combinations of the list equal to v.

9. Let V be a vector space over the field F. Show that every list of vectors in
the trivial subspace of V is both linearly independent and spanning (i.e.,
spans the entire trivial subspace).

10. (⋆) Show that every spanning list of vectors L = {v1, . . . vn} in a vector
space V can be made into a linearly independent list L′ such that spanL =
spanL′.

13



Bonus. Let R2 be viewed as a vector space over the field Q. Is the list

{[
1
0
] , [

√
2
0
]}

linearly independent?
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