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1 Vector Subspaces
1. Is

S = {[
a1
a2
] ∈ R2

∶ a1 = −a2}

a subspace of R2? Justify your answer with rigorous reasoning.

Solution. The set S is a subspace of R2.

Recall that, in order to verify whether S is a subspace of R2 or not,
we need to verify whether S is closed under vector addition and scalar
multiplication. Consider the following two arbitrary elements of S: [ a1

a2 ] ∈

S and [ b1b2 ] ∈ S. Because these vectors are in S, and all vectors in S have
the property that a1 = −a2, we can rewrite these vectors as [ −a2

a2
] ∈ S and

[ −b2b2
] ∈ S. We begin by verifying closure under vector addition:

[
−a2
a2
] + [
−b2
b2
] = [
−a2 − b2
a2 + b2

] = [
−(a2 + b2)
a2 + b2

] ,

so S is closed under vector addition. We now verify closure under scalar
multiplication. Let c ∈ R. Then

c [
−a2
a2
] = [

c ⋅ −a2
c ⋅ a2

] = [
−(ca2)
ca2

] .

Since S is closed under vector addition and scalar multiplication, S is a
subspace of R2.

2. Is

S = {[
a1
a2
] ∈ R2

∶ a2 = a
2
1}

a subspace of R2? Justify your answer with rigorous reasoning.
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Solution. The set S is not a subspace of R2.

Consider [ a1
a2 ] ∈ S and [ b1b2 ] ∈ S. We can rewrite these as [

a1

a2
1
] ∈ S and

[
b1
b21
] ∈ S as a consequence of the constraint on members of S. First, we

verify closure under vector addition:

[
a1
a21
] + [

b1
b21
] = [

a1 + b1
a21 + b

2
1
] ≠ [

a1 + b1
(a1 + b1)

2] ,

thus S fails to be closed under vector addition and is consequently not a
subspace of R2.

3. (⋆) Describe a nontrivial subspace of C2 over the field R that is not simply
the restriction of some entries to 0. Prove it is a subspace.

Solution. The purpose of this exercise was primarily to draw attention to the fact
that vector spaces of the form Fn do not necessarily force the underlying
field to be F. There are many correct solutions to this problem, but we
will share one of the solutions which we perceive to be the most straight-
forward. Set

S = {[
a1
a2
] ∈ C2

∶ a2 = 5a1} .

Taking arbitrary vectors [ a1
a2 ] ∈ S and [ b1b2 ] ∈ S, we can rewrite them as

[
a1
5a1
] and [ b1

5b1
]. First verifying closure under vector addition, we see

[
a1
5a1
] + [

b1
5b1
] = [

a1 + b1
5a1 + 5b1

] = [
a1 + b1

5(a1 + b1)
] .

Let c ∈ R. Then

c [
a1
5a1
] = [

c ⋅ a1
c ⋅ 5a1

] = [
ca1

5(ca1)
] .

Thus, S is a subspace of C2 over the field R. It is also nontrivial.

4. Choose your favorite vector

v = [
a1
a2
] ∈ R2.

Can you describe a nontrivial vector subspace of R2 containing v?
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Solution. Let v = [ 254 ]
1. The line passing through the origin containing v is a

subspace (one can feel this intuitively, later formally justifying it in this
exercise. Alternatively, one could simply Exercise 5.) We can write this
line as

S = {[
a1
a2
] ∈ R2

∶ (a2 − 4) =
4

25
(a1 − 25)} .

Simplifying, we have

S = {[
a1
a2
] ∈ R2

∶ a2 =
4

25
a1} .

We verify closure under vector addition; take arbitrary vectors [
a1
4
25a1
] ∈ S

and [ b1
4
25 b1
] ∈ S. We compute the following:

[
a1
4
25
a1
] + [

b1
4
25
b1
] = [

a1 + b1
4
25
a1 +

4
25
b1
] = [

a1 + b1
4
25
(a1 + b1)

] .

Thus, we have closure under vector addition. Let c ∈ R. Then

c [
a1
4
25
a1
] = [

c ⋅ a1
c ⋅ 4

25
a1
] = [

ca1
4
25
(ca1)

] .

Consequently, S is closed under vector addition and scalar multiplication,
and S contains [ 254 ].

5. (⋆) Show that every line passing through the origin of R2 (i.e., containing
the zero vector) is a subspace of R2.

Solution. First, note that the horizontal axis (i.e., all vectors with zero in their
second component) and the vertical axis (i.e., all vectors with zero in their
first component) are subspaces of R2. This can be verified the standard
way. In all other cases, lines have the form

S = {[
a1
a2
] ∈ R2

∶ a2 = ka1}

where k is a fixed integer in R∖{0}. Note that there is no constant term in
a2 = ka1, since subspaces necessarily contain the origin. Selecting [ a1

a2 ] ∈ S
and [ b1b2 ] ∈ S, we have

[
a1
a2
] + [

b1
b2
] = [

a1
ka1
] + [

b1
kb1
] = [

a1 + b1
ka1 + kb1

] = [
a1 + b1

k(a1 + b1)
] .

1This procedure will work with any vector in R2 with the exception of vectors with 0 in
their first component, in which case your subspace is simply the vertical axis in R2.
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Thus, S is closed under vector addition. Let c ∈ R. Then

c ⋅ [
a1
a2
] = [

ca1
cka1
] = [

ca1
k(ca1)

] .

Consequently, S is closed under both vector addition and scalar multipli-
cation, and is thus a subspace of R2.

6. Why is S = {[
a1
a2
] ∈ Z2

5 ∶ a1, a2 are odd modulo 5} not a subspace of Z2
5?

Solution. A trivial justification would be to take [ 33 ] ∈ S. Choosing 0 ∈ Z5, we have

0 ⋅ [
3
3
] = [

0 ⋅ 3
0 ⋅ 3
] = [

0
0
] ∉ S.

7. Let F be a field (and thus a vector space). What are the subspaces of F?

Solution. Given a vector space V over a field F, V and {0} are always subspaces
of V . In this case, F and {0}, 0 ∈ F are subspaces of F. But are there
any other subspaces of F? Suppose such a subspace U ≠ {0} ≠ F exists.
Choose a nonzero u ∈ U . For any x ∈ F, we have x = (xu)u−1. Then, since
F is closed under scalar multiplication by F, x = (xu)u−1 ∈ U for all x ∈ F,
and thus U = F, a contradiction. Consequently, the only two subspaces of
a field F are {0} and F itself.

8. Is

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a3 = a1 − a2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

a subspace of R3? Justify your answer with rigorous reasoning.

Solution. The set S is a vector subspace of R3.

Let [
a1
a2
a3
] ∈ S and [

b1
b2
b3
] ∈ S. We check for closure under vector addition

first:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1
b2
b3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2

a1 − a2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1
b2

b1 − b2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1 + b1
a2 + b2

a1 + b1 − a2 − b2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1 + b1
a2 + b2

(a1 + b1) − (a2 + b2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Letting c ∈ R, we have

c ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= c ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2

a1 − a2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ca1
ca2

c(a1 − a2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ca1
ca2

(ca1) − (ca2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Consequently, S is closed under both vector addition and scalar multipli-
cation, and is thus a subspace of R3.

9. Is

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a2 = 4a3, a1 = −2a2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

a subspace of R3? Justify your answer with rigorous reasoning.

Solution. The set S is a vector subspace of R3.

Let [
a1
a2
a3
] ∈ S and [

b1
b2
b3
] ∈ S. We first check for closure under vector addition.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1
b2
b3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−8a3
4a3
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−8b3
4b3
b3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−8(a3 + b3)
4(a3 + b3)
(a3 + b3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ S.

Thus, we have closure under vector addition. Let c ∈ R. Then

c ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= c ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−8a3
4a3
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−8(ca3)
4(ca3)
(ca3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ S

.

This gives us closure under scalar multiplication. Since S ⊂ R3 is closed
under both vector addition and scalar multiplication, it is a subspace of
R3.

10. Is

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶ a1 + 2a2 + 4a3 = 5

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

a subspace of R3? Justify your answer with rigorous reasoning.

Solution. The set S is not a subspace of R3.

Let [
a1
a2
a3
] ∈ S. Then choosing 0 ∈ R, we have

0 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋅ a1
0 ⋅ a2
0 ⋅ a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

However, 0 + 2 ⋅ 0 + 4 ⋅ 0 ≠ 5, so the zero vector is not in S, and thus S is
not closed under scalar multiplication. Thus, S is not a subspace of R3.

5



Remark 1.1. Notice that those sets which were subspaces of their respective
super-spaces had linear constraints at most (i.e., no conditions on squares, cubes,
and so on). This hints at the idea that having at most linear constraints on a
set is crucial to that set being a subspace.

Even the linear constraints, however, were not sufficient; our constraints
also had to ensure that the relevant geometric figure formed by the subset (i.e.,
line, plane) passed through the origin.

2 Span and Linear Independence
1. Is the list of vectors

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5
−2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

7
0
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

in R3 linearly independent? Justify your response.

Solution. The list is linearly independent in R3.

Recall that asking whether a list of vectors (v1, . . . , vn) is linearly inde-
pendent is the same as asking whether the equation

(v1 ⋯ vn)
⎛
⎜
⎝

c1
⋮

cn

⎞
⎟
⎠
=
⎛
⎜
⎝

0
⋮

0

⎞
⎟
⎠

has a solution c1, . . . , cn such that at least one of the ci, 1 ≤ i ≤ n is nonzero.
We can determine whether this is the case via Gaussian elimination on the
matrix of the vi, 1 ≤ i ≤ n augmented (appended as the last column) with
the zero column vector. In our case, we obtain the following matrix as our
augmented matrix:

⎛
⎜
⎝

5 2 7 ∣ 0

−2 0 0 ∣ 0

1 3 4 ∣ 0

⎞
⎟
⎠
.

We now apply Gaussian elimination to this matrix:

R1 ←
R1

5
∶
⎛
⎜
⎝

1 2/5 7/5 ∣ 0

−2 0 0 ∣ 0

1 3 4 ∣ 0

⎞
⎟
⎠

R2 ← R2 + 2R1 ∶
⎛
⎜
⎝

1 2/5 7/5 ∣ 0

0 4/5 14/5 ∣ 0

1 3 4 ∣ 0

⎞
⎟
⎠
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R3 ← R3 −R1 ∶
⎛
⎜
⎝

1 2/5 7/5 ∣ 0

0 4/5 14/5 ∣ 0

0 13/5 13/5 ∣ 0

⎞
⎟
⎠

R2 ←
5R2

4
∶
⎛
⎜
⎝

1 2/5 7/5 ∣ 0

0 1 7/2 ∣ 0

0 13/5 13/5 ∣ 0

⎞
⎟
⎠

R1 ← R1 −
2R2

5
∶
⎛
⎜
⎝

1 0 0 ∣ 0

0 1 7/2 ∣ 0

0 13/5 13/5 ∣ 0

⎞
⎟
⎠

R3 ← R3 −
13R2

5
∶
⎛
⎜
⎝

1 0 0 ∣ 0

0 1 7/2 ∣ 0

0 0 −13/2 ∣ 0

⎞
⎟
⎠

R3 ←
−2R3

13
∶
⎛
⎜
⎝

1 0 0 ∣ 0

0 1 7/2 ∣ 0

0 0 1 ∣ 0

⎞
⎟
⎠

R2 ← R2 −
7R3

2
∶
⎛
⎜
⎝

1 0 0 ∣ 0

0 1 0 ∣ 0

0 0 1 ∣ 0

⎞
⎟
⎠
.

Thus, the only solution to our system of equations is

⎛
⎜
⎝

c1
c2
c3

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
.

Consequently, the list is independent in R3.

2. Is the list of vectors
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4
2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
2
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

in Z3
5 linearly independent? Justify your response.

Solution. The list is not linearly independent (i.e, the list is linearly dependent).
Recall that all row operations done here are computed modulo 5. We first
form our augmented matrix:

⎛
⎜
⎝

2 4 0 ∣ 0

1 2 2 ∣ 0

3 1 4 ∣ 0

⎞
⎟
⎠
.
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We apply Gaussian elimination to this augmented matrix:

R1 ↔ R2 ∶
⎛
⎜
⎝

1 2 2 ∣ 0

2 4 0 ∣ 0

3 1 4 ∣ 0

⎞
⎟
⎠

R2 ← R2 − 2R1 ∶
⎛
⎜
⎝

1 2 2 ∣ 0

0 0 1 ∣ 0

3 1 4 ∣ 0

⎞
⎟
⎠

R3 ← R3 − 3R1 ∶
⎛
⎜
⎝

1 2 2 ∣ 0

0 0 1 ∣ 0

0 0 3 ∣ 0

⎞
⎟
⎠

R3 ← R3 − 3R2 ∶
⎛
⎜
⎝

1 2 2 ∣ 0

0 0 1 ∣ 0

0 0 0 ∣ 0

⎞
⎟
⎠

R1 ← R1 − 2R2 ∶
⎛
⎜
⎝

1 2 0 ∣ 0

0 0 1 ∣ 0

0 0 0 ∣ 0

⎞
⎟
⎠
.

Thus, we obtain the solution

c1 + 2c2 = 0 mod 5, c3 = 0 mod 5

This implies that

c1 = −2c2 mod 5, c3 = 0 mod 5.

Letting c2 = 2, c1 = −2 ⋅ 2 = 3 ⋅ 2 = 1 mod 5, and c3 = 0, so we obtain the
solution

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≠

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Consequently, the list is not linearly independent.

3. Describe the set

span
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
1
−3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5
1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

What geometric figure in R3 does it form?
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Solution. Recall that the span of a list of vectors is the set of all linear combinations
of those vectors. In our case:

span
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
1
−3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5
1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3
∶

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= c1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
1
−3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c2 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5
1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, c1, c2 ∈ R
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Thus, all vectors in this span have the form

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2c1
c1
−3c1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5c2
c2
2c2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2c1 + 5c2
c1 + c2
−3c1 + 2c2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, c1, c2 ∈ R.

This set forms a plane through the origin, since the two vectors in the list
are linearly independent (and thus are not scalar multiples of each other).

4. Is
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
4
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ span
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3
3
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

where all vectors are in Z3
5? Justify your response.

Solution. The vector is in the span of the given list.

Let V be a vector space over the field F. Recall that asking if a vector
v ∈ span{v1, . . . , vn}, where vi ∈ V , 1 ≤ i ≤ n, is equivalent to asking
whether there exist scalars ci ∈ F, 1 ≤ i ≤ n such that

v = c1v1 +⋯ + cnvn.

We can express this as an equation involving matrices.

(v1 ⋯ vn)
⎛
⎜
⎝

c1
⋮

cn

⎞
⎟
⎠
= v.

Once again, Gaussian elimination proves to be an excellent tool to deter-
mine whether such solutions exist, and the values of such solutions should
they exist. We form our augmented matrix:

⎛
⎜
⎝

3 3 ∣ 0

1 3 ∣ 4

4 2 ∣ 1

⎞
⎟
⎠
.

We now apply Gaussian elimination. Recall that all computations are
done modulo 5.
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R1 ↔ R2 ∶
⎛
⎜
⎝

1 3 ∣ 4

3 3 ∣ 0

4 2 ∣ 1

⎞
⎟
⎠
.

R2 ← R2 − 3R1 ∶
⎛
⎜
⎝

1 3 ∣ 4

0 4 ∣ 3

4 2 ∣ 1

⎞
⎟
⎠
.

R3 ← R3 − 4R1 ∶
⎛
⎜
⎝

1 3 ∣ 4

0 4 ∣ 3

0 0 ∣ 0

⎞
⎟
⎠
.

R2 ← 4R2 ∶
⎛
⎜
⎝

1 3 ∣ 4

0 1 ∣ 2

0 0 ∣ 0

⎞
⎟
⎠
.

R1 ← R1 − 3R2 ∶
⎛
⎜
⎝

1 0 ∣ 3

0 1 ∣ 2

0 0 ∣ 0

⎞
⎟
⎠
.

So indeed,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
4
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3
3
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

5. Identify a vector v in R3 such that when v is added to the list

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

6
−5
7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

the resultant list is linearly independent.

Solution. An easy choice is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

This is because linear dependence captures the relationship of proportion-
ality, but

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

is not proportional to

⎡
⎢
⎢
⎢
⎢
⎢
⎣

6
−5
7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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That is, there is no pair of scalars c1, c2 ∈ R such that

c1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c2 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

6
−5
7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

6. Is
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4
3
−5
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ span

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
−6
2
−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
−9
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
5
−3
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,

where all vectors are in R4? Justify your response.

Solution. The given vector is not in the span of the given list of vectors.

We first form the corresponding augmented matrix:

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

−6 1 5 ∣ 3

2 −9 −3 ∣ −5

−2 2 1 ∣ 1

⎞
⎟
⎟
⎟
⎟
⎠

.

We now apply Gaussian elimination to this matrix:

R2 ← R2 −R3 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

0 1 −1 ∣ −9

2 −9 −3 ∣ −5

−2 2 1 ∣ 1

⎞
⎟
⎟
⎟
⎟
⎠

R3 ← R3 −R1 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

0 1 −1 ∣ −9

0 −9 −1 ∣ −1

−2 2 1 ∣ 1

⎞
⎟
⎟
⎟
⎟
⎠

R4 ← R4 −R1 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

0 1 −1 ∣ −9

0 −9 −1 ∣ −1

0 2 −1 ∣ −3

⎞
⎟
⎟
⎟
⎟
⎠

R3 ← R3 + 9R2 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

0 1 −1 ∣ −9

0 0 −10 ∣ −82

0 2 −1 ∣ −3

⎞
⎟
⎟
⎟
⎟
⎠
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R4 ← R4 − 2R2 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

0 1 −1 ∣ −9

0 0 −10 ∣ −82

0 0 1 ∣ 15

⎞
⎟
⎟
⎟
⎟
⎠

R3 ↔ R4 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

0 1 −1 ∣ −9

0 0 1 ∣ 15

0 0 −10 ∣ −82

⎞
⎟
⎟
⎟
⎟
⎠

R2 ← R2 +R3 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 2 ∣ 4

0 1 0 ∣ 6

0 0 1 ∣ 15

0 0 −10 ∣ −82

⎞
⎟
⎟
⎟
⎟
⎠

R1 ← R1 − 2R3 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 0 ∣ −26

0 1 0 ∣ 6

0 0 1 ∣ 15

0 0 −10 ∣ −82

⎞
⎟
⎟
⎟
⎟
⎠

R4 ← R4 + 10R3 ∶

⎛
⎜
⎜
⎜
⎜
⎝

−2 0 0 ∣ −26

0 1 0 ∣ 6

0 0 1 ∣ 15

0 0 0 ∣ 68

⎞
⎟
⎟
⎟
⎟
⎠

.

The fourth row of the last matrix gives us 0 = 68, which implies that the
system is inconsistent. Thus

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4
3
−5
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∉ span

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
−6
2
−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
−9
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
5
−3
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

.

7. (⋆) Show that, for any list {v1, . . . vn} of vectors in a vector space V ,
span{v1, . . . vn} is the smallest (inclusion-wise) subspace of V containing
{v1, . . . vn}.

Solution. Let U ⊂ V be a subspace with v1, . . . , vn ∈ U . Then cvi ∈ U , 1 ≤ i ≤ n for
all c ∈ F, where F is the underlying field of V , since subspaces are closed
under scalar multiplication. Subspaces are also closed under addition, so

c1v1 +⋯ + cnvn ∈ U, ci ∈ R, 1 ≤ i ≤ n.

Consequently, span{v1, . . . , vn} ⊂ U . Thus, any subspace of V containing
{v1, . . . , vn} contains span{v1, . . . , vn}.
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8. Give an example of a list of vectors in R3 which is linearly dependent.
Find some v in the span of the list such that there are two distinct linear
combinations of the list equal to v.

Solution. Consider the list

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

We have

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 0 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 0 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 1 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

9. Let V be a vector space over the field F. Show that every list of vectors in
the trivial subspace of V is both linearly independent and spanning (i.e.,
spans the entire trivial subspace).

Solution. The statement is actually not true! Any list containing 0 is linearly de-
pendent, so {0} is not linearly independent.

10. (⋆) Show that every spanning list of vectors L = {v1, . . . vn} in a vector
space V can be made into a linearly independent list L′ such that spanL =
spanL′.

Solution. Let L = {v1, . . . vn} span V . If L is already linearly independent, then set
L′ = L, and we are done. If L is not linearly independent (i.e., linearly
dependent), proceed as follows:

Begin with L0 = ∅ (the empty list). For i = 1, . . . , n, if vi ∉ span(Li−1), set
Li = Li−1 ∪ {vi}. Otherwise, set Li = Li−1 (that is, drop vi from the list).
Let L′ = Ln. Because the list is finite, this process ends.

Evidently, L′ ⊂ L, so spanL′ ⊂ spanL. Conversely, every dropped vi lies in
spanL′ by definition. Every dropped vi was in spanLi−1 ⊂ spanL′ at the
moment it was dropped. Hence, each vi ∈ spanL′, so spanL ⊂ spanL′, so
spanL′ = spanL.

The list L′ is linearly independent by construction, since whenever we add
a new vector, it is not in the span of the vectors already kept. This is
exactly the criterion for linear independence.
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Thus, L′ is a linearly independent list with spanL′ = spanL, and we are
done.
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