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1.1. Describe the span of L.

Solution. Before proceeding with Gaussian elimination, what can we say about
the span of L given the length (4) of L? Given that the vectors of
L are in Z2, and that there are four of them, we cannot conclude
anything from this information alone, as they could span a line, a
plane, a "3-D space" (hyper-plane), or all of Z3. We will use Gaussian
elimination to determine the kind of space these vectors span.
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1. Consider the list of vectors L = ([ ;] , [
4

Recall that asking about the span of this list is the same as asking
about the structure (and in particular the constraints) of the vectors
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for ¢y, co, 3, ¢4 € Zs. We will simplify this system of equations by ap-
plying Gaussian elimination to the matrix with columns consisting of
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We now apply Gaussian elimination to M:
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The matrix post Gaussian elimination has a pivot in every row. Con-
sequently, L spans Zé.

1.2. Is L linearly independent in Z3?

Solution. From the previous part of this question, we see that L comprises a
spanning list of length 4 in Z3. The dimension of Z3 is 4. Given a
vector space of dimension n, every spanning list of length n is linearly
independent. Thus L is linearly independent in Zé.

1.3. Determine whether L is a basis for Z‘é

Solution. From the previous two parts of this question, we have that L spans
Zs and is linearly independent. A list of vectors is a basis for a
space if and only if it is linearly independent and spans the space.
Consequently, L is a basis for Z3.

1.4. Compute the dimension of the span of L.
4

Solution. Since spanL = Z2, and Z2 has dimension 4, spanL has dimension 4.

2. Is the set

U:{[g%]GR?’:ag:a1+2a1a3+a3}.

a subspace of R3?



Solution. Consider the following two elements of U: [411] and [%] We have
1 1 2
41+|1]=|5].
1 0 1

However, 5 # 1+2-2-1+1. Consequently, U fails to be closed under vector
addition, and is thus not a subspace of R3.



