

Test Two Supplementary Practice Test

Christian B. Hughes

BIE-LA1 - Winter 2025

1. Let

$$M = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 3 & 4 \\ 2 & 0 & 1 & 5 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

with entries in \mathbb{Z}_7 . Is M invertible? If so, compute its inverse.

2. Consider the lists of vectors $L_1 = \left(\begin{bmatrix} \frac{1}{2} \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)$ and $L_2 = \left(\begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} \frac{1}{0} \\ -1 \end{bmatrix} \right)$ of vectors in \mathbb{R}^4 .

- (a) Is it true that $\text{span}L_1 = \text{span}L_2$?
- (b) Is L_1 a basis for \mathbb{R}^4 ? If not, extend it to a basis for \mathbb{R}^4 .
- (c) Denote the basis of part (b) by \mathcal{B} . Compute $[I]_{\mathcal{E} \leftarrow \mathcal{B}}$.

3. Consider the basis $\mathcal{B} = \left(\begin{bmatrix} \frac{1}{2} \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \right)$.

- (a) Compute $[I]_{\mathcal{E} \leftarrow \mathcal{B}}$ and $[I]_{\mathcal{B} \leftarrow \mathcal{E}}$.
- (b) Let \mathcal{B}' be the basis $\left(\begin{bmatrix} \frac{3}{4} \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 6 \\ -2 \\ 6 \end{bmatrix} \right)$. Compute $[I]_{\mathcal{B}' \leftarrow \mathcal{B}}$ and $[I]_{\mathcal{B} \leftarrow \mathcal{B}'}$.

4. Let

$$M = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 3 & 4 \\ 1 & -1 & 2 & 0 \end{pmatrix}.$$

- (a) Compute $\ker(M)$ and $\text{ran}(M)$.
- (b) What is the dimension of $\ker M$ and what is the rank of M ? Justify your response.
- (c) Describe the range of M^T . What is the rank of M^T ?

5. (Disclaimer: according to updated information, you are unlikely to have true/false questions on your second test. I am leaving these here because I think they are good practice.)

- (a) **True/False:** There is a spanning list of length 3 in \mathbb{Z}_{13}^2 .
- (b) **True/False:** There is a linearly independent list of length 7 in \mathbb{R}^6 .
- (c) **True/False:** There is a matrix $A \in M_{5,7}(\mathbb{R})$ with $\dim(\ker A) = 2$ and $\text{rank}(A) = 4$.
- (d) **True/False:** Each matrix $A \in M_{8,8}(\mathbb{R})$ with $\text{rank}(A) = 0$ has linearly independent columns.