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1. Let

M =
⎛
⎜⎜⎜
⎝

1 2 0 1
0 1 3 4
2 0 1 5
1 1 1 1

⎞
⎟⎟⎟
⎠

with entries in Z7. Is M invertible? If so, compute its inverse.

Solution. A matrix M is invertible if and only if it can be row-reduced to the iden-
tity. Furthermore, the matrix obtained from the application of these row-
reductions of the identity matrix is the inverse of M . Thus, we augment
M with the identity matrix, forming the matrix

⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 3 4 0 1 0 0
2 0 1 5 0 0 1 0
1 1 1 1 0 0 0 1

⎞
⎟⎟⎟
⎠
.

We now apply Gaussian elimination to row-reduce the left half of this
augmented matrix to the identity.

R4 ← 6R1 +R4 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 3 4 0 1 0 0
2 0 1 5 0 0 1 0
0 6 1 0 6 0 0 1

⎞
⎟⎟⎟
⎠

R3 ← 5R1 +R3 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 3 4 0 1 0 0
0 3 1 3 5 0 1 0
0 6 1 0 6 0 0 1

⎞
⎟⎟⎟
⎠

R3 ← 4R2 +R3 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 3 4 0 1 0 0
0 0 6 5 5 4 1 0
0 6 1 0 6 0 0 1

⎞
⎟⎟⎟
⎠
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R4 ← R2 +R4 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 3 4 0 1 0 0
0 0 6 5 5 4 1 0
0 0 4 4 6 1 0 1

⎞
⎟⎟⎟
⎠

R3 ← 6R3 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 3 4 0 1 0 0
0 0 1 2 2 3 6 0
0 0 4 4 6 1 0 1

⎞
⎟⎟⎟
⎠

R2 ← 4R3 +R2 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 0 5 1 6 3 0
0 0 1 2 2 3 6 0
0 0 4 4 6 1 0 1

⎞
⎟⎟⎟
⎠

R4 ← 3R3 +R4 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 0 5 1 6 3 0
0 0 1 2 2 3 6 0
0 0 0 3 5 3 4 1

⎞
⎟⎟⎟
⎠

R4 ← 5R4 ∶
⎛
⎜⎜⎜
⎝

1 2 0 1 1 0 0 0
0 1 0 5 1 6 3 0
0 0 1 2 2 3 6 0
0 0 0 1 4 1 6 5

⎞
⎟⎟⎟
⎠

R1 ← 6R4 +R1 ∶
⎛
⎜⎜⎜
⎝

1 2 0 0 4 6 1 2
0 1 0 5 1 6 3 0
0 0 1 2 2 3 6 0
0 0 0 1 4 1 6 5

⎞
⎟⎟⎟
⎠

R2 ← 2R4 +R2 ∶
⎛
⎜⎜⎜
⎝

1 2 0 0 4 6 1 2
0 1 0 0 2 1 1 3
0 0 1 2 2 3 6 0
0 0 0 1 4 1 6 5

⎞
⎟⎟⎟
⎠

R3 ← 5R4 +R3 ∶
⎛
⎜⎜⎜
⎝

1 2 0 0 4 6 1 2
0 1 0 0 2 1 1 3
0 0 1 0 1 1 1 4
0 0 0 1 4 1 6 5

⎞
⎟⎟⎟
⎠

R1 ← 5R2 +R1 ∶
⎛
⎜⎜⎜
⎝

1 0 0 0 0 4 6 3
0 1 0 0 2 1 1 3
0 0 1 0 1 1 1 4
0 0 0 1 4 1 6 5

⎞
⎟⎟⎟
⎠
.
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The left block is the identity, so M is invertible, and its inverse is

M−1 =
⎛
⎜⎜⎜
⎝

0 4 6 3
2 1 1 3
1 1 1 4
4 1 6 5

⎞
⎟⎟⎟
⎠
.

2. Consider the lists of vectors L1 = ([
1
1
0
2
] , [

0
1
1
1
]) and L2 = ([

1
2
1
3
] , [

1
0
−1
1
]) of

vectors in R4.

(a) Is it true that spanL1 = spanL2?

Solution. We place all four vectors as columns of a single matrix and apply
Gaussian elimination:

A =
⎛
⎜⎜⎜
⎝

1 0 1 1
1 1 2 0
0 1 1 −1
2 1 3 1

⎞
⎟⎟⎟
⎠
.

R2 ← R2 −R1 ∶
⎛
⎜⎜⎜
⎝

1 0 1 1
0 1 1 −1
0 1 1 −1
2 1 3 1

⎞
⎟⎟⎟
⎠

R4 ← R4 − 2R1 ∶
⎛
⎜⎜⎜
⎝

1 0 1 1
0 1 1 −1
0 1 1 −1
0 1 1 −1

⎞
⎟⎟⎟
⎠

R3 ← R3 −R2 ∶
⎛
⎜⎜⎜
⎝

1 0 1 1
0 1 1 −1
0 0 0 0
0 1 1 −1

⎞
⎟⎟⎟
⎠

R4 ← R4 −R2 ∶
⎛
⎜⎜⎜
⎝

1 0 1 1
0 1 1 −1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

This is a row-echelon form of A. There are pivots in the first and
second columns, and such pivots would also occur if we augmented
taking L2 first. We observe that the span does not change when the
two lists are taken together. Thus the spans are the same.

(b) Is L1 a basis for R4? If not, extend it to a basis for R4.
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Solution. The list L1 has only two vectors in R4. Since any spanning set for R4

must contain at least four linearly independent vectors, L1 cannot be
a basis for R4.
We now extend L1 to a basis by augmenting with the identity and
applying Gaussian elimination.

⎛
⎜⎜⎜
⎝

1 0 1 0 0 0
1 1 0 1 0 0
0 1 0 0 1 0
2 1 0 0 0 1

⎞
⎟⎟⎟
⎠
.

R2 ← R2 −R1 ∶
⎛
⎜⎜⎜
⎝

1 0 1 0 0 0
0 1 −1 1 0 0
0 1 0 0 1 0
2 1 0 0 0 1

⎞
⎟⎟⎟
⎠

R4 ← R4 − 2R1 ∶
⎛
⎜⎜⎜
⎝

1 0 1 0 0 0
0 1 −1 1 0 0
0 1 0 0 1 0
0 1 −2 0 0 1

⎞
⎟⎟⎟
⎠

R3 ← R3 −R2 ∶
⎛
⎜⎜⎜
⎝

1 0 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 1 0
0 1 −2 0 0 1

⎞
⎟⎟⎟
⎠

R4 ← R4 −R2 ∶
⎛
⎜⎜⎜
⎝

1 0 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 −1 −1 0 1

⎞
⎟⎟⎟
⎠

R4 ← R4 +R3 ∶
⎛
⎜⎜⎜
⎝

1 0 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 −2 1 1

⎞
⎟⎟⎟
⎠

This matrix is in row-echelon form. The pivot columns are the first,
second, third, and fourth columns. The first two pivot columns corre-
spond to the vectors in the original list, and the last two correspond
to the standard basis vectors e1 and e2.
Thus, L1 is not a basis for R4, but

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

is a basis for R4 extending L1.
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(c) Denote the basis of part (b) by B. Compute [I]E←B.
Solution. By definition, the change-of-basis matrix [I]E←B has as columns the

vectors of B written in the standard basis. Thus

[I]E←B =
⎛
⎜⎜⎜
⎝

1 0 1 0
1 1 0 1
0 1 0 0
2 1 0 0

⎞
⎟⎟⎟
⎠
.

3. Consider the basis B = ([ 12
0
] , [ 01

3
] , [ 2

−1
1
]).

(a) Compute [I]E←B and [I]B←E .
Solution. Writing the vectors of B as columns gives the change of basis from

B–coordinates to the standard basis:

[I]E←B =
⎛
⎜
⎝

1 0 2
2 1 −1
0 3 1

⎞
⎟
⎠
.

Thus [I]B←E is its inverse. We find it by Gaussian elimination:

⎛
⎜
⎝

1 0 2 1 0 0
2 1 −1 0 1 0
0 3 1 0 0 1

⎞
⎟
⎠

R2 ← R2 − 2R1 ∶
⎛
⎜
⎝

1 0 2 1 0 0
0 1 −5 −2 1 0
0 3 1 0 0 1

⎞
⎟
⎠

R3 ← R3 − 3R2 ∶
⎛
⎜
⎝

1 0 2 1 0 0
0 1 −5 −2 1 0
0 0 16 6 −3 1

⎞
⎟
⎠

R3 ← 1
16
R3 ∶
⎛
⎜
⎝

1 0 2 1 0 0
0 1 −5 −2 1 0
0 0 1 3

8
− 3

16
1
16

⎞
⎟
⎠

R1 ← R1 − 2R3 ∶
⎛
⎜
⎝

1 0 0 1
4

3
8

− 1
8

0 1 −5 −2 1 0
0 0 1 3

8
− 3

16
1
16

⎞
⎟
⎠

R2 ← R2 + 5R3 ∶
⎛
⎜
⎝

1 0 0 1
4

3
8

− 1
8

0 1 0 − 1
8

1
16

5
16

0 0 1 3
8
− 3

16
1
16

⎞
⎟
⎠

Hence

[I]B←E =
⎛
⎜
⎝

1
4

3
8

− 1
8

− 1
8

1
16

5
16

3
8
− 3

16
1
16

⎞
⎟
⎠
.
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(b) Let B′ be the basis ([ 32
4
] , [ 2

3
−3
] , [ 6

−2
6
]). Compute [I]B′←B and [I]B←B′ .

Solution. First write the matrices whose columns are the basis vectors:

[I]E←B =
⎛
⎜
⎝

1 0 2
2 1 −1
0 3 1

⎞
⎟
⎠
, [I]E←B′ =

⎛
⎜
⎝

3 2 6
2 3 −2
4 −3 6

⎞
⎟
⎠
.

To get [I]B←B′ , we solve

[I]E←B [I]B←B′ = [I]E←B′ ,

i.e., we row-reduce the augmented matrix ([I]E←B ∣ [I]E←B′):

⎛
⎜
⎝

1 0 2 3 2 6
2 1 −1 2 3 −2
0 3 1 4 −3 6

⎞
⎟
⎠

R2 ← R2 − 2R1 ∶
⎛
⎜
⎝

1 0 2 3 2 6
0 1 −5 −4 −1 −14
0 3 1 4 −3 6

⎞
⎟
⎠

R3 ← R3 − 3R2 ∶
⎛
⎜
⎝

1 0 2 3 2 6
0 1 −5 −4 −1 −14
0 0 16 16 0 48

⎞
⎟
⎠

R3 ← 1
16
R3 ∶
⎛
⎜
⎝

1 0 2 3 2 6
0 1 −5 −4 −1 −14
0 0 1 1 0 3

⎞
⎟
⎠

R1 ← R1 − 2R3 ∶
⎛
⎜
⎝

1 0 0 1 2 0
0 1 −5 −4 −1 −14
0 0 1 1 0 3

⎞
⎟
⎠

R2 ← R2 + 5R3 ∶
⎛
⎜
⎝

1 0 0 1 2 0
0 1 0 1 −1 1
0 0 1 1 0 3

⎞
⎟
⎠

Thus the left block is the identity and the right block is the change-
of-basis matrix

[I]B←B′ =
⎛
⎜
⎝

1 2 0
1 −1 1
1 0 3

⎞
⎟
⎠
.

Since change-of-basis matrices are inverses of each other, we obtain

[I]B′←B = ([I]B←B′)
−1 =
⎛
⎜⎜
⎝

3
7

6
7
− 2

7
2
7
− 3

7
1
7

− 1
7
− 2

7
3
7

⎞
⎟⎟
⎠
.
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4. Let

M =
⎛
⎜
⎝

1 2 0 1
0 1 3 4
1 −1 2 0

⎞
⎟
⎠
.

(a) Compute ker(M) and ran(M).
Solution. We would like to understand the system of linear equations induced

by this matrix. We first apply Gaussian elimination to reduce the
matrix to row-echelon form.

M =
⎛
⎜
⎝

1 2 0 1
0 1 3 4
1 −1 2 0

⎞
⎟
⎠

R3 ← R3 −R1 ∶
⎛
⎜
⎝

1 2 0 1
0 1 3 4
0 −3 2 −1

⎞
⎟
⎠

R3 ← R3 + 3R2 ∶
⎛
⎜
⎝

1 2 0 1
0 1 3 4
0 0 11 11

⎞
⎟
⎠

R3 ←
1

11
R3 ∶
⎛
⎜
⎝

1 2 0 1
0 1 3 4
0 0 1 1

⎞
⎟
⎠

Thus, we are left with

⎛
⎜
⎝

1 2 0 1
0 1 3 4
0 0 1 1

⎞
⎟
⎠
.

Recall that the kernel of a matrix A is the set of all vectors v such that
Av = 0. Recall that Gaussian elimination does not alter the solution
set of the original system of linear equations. Thus, we would like to
solve

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
=
⎛
⎜
⎝

1 2 0 1
0 1 3 4
0 0 1 1

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

x1

x2

x3

x4

⎞
⎟⎟⎟
⎠

For scalars x1, x2, x3, x4 ∈ R. We obtain the following system of linear
equations

x1 + 2x2 + x4 = 0, x2 + 3x3 + 4x4 = 0, x3 + x4 = 0.
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We now apply these constraints to the vector of the xi, obtaining

⎛
⎜⎜⎜
⎝

x4

−x4

−x4

x4

⎞
⎟⎟⎟
⎠
= x4

⎛
⎜⎜⎜
⎝

x4

−x4

−x4

x4

⎞
⎟⎟⎟
⎠
= span

⎛
⎜⎜⎜
⎝

1
−1
−1
1

⎞
⎟⎟⎟
⎠
= kerM.

Observing the row-reduced form of M , we find a pivot in every col-
umn, and consequently its range is R3.

(b) What is the dimension of kerM and what is the rank of M? Justify
your response.

Solution. Clearly the dimension of the range of M , R3, is 3. By the rank
theorem, dim(ker(M)) = 4−3 = 1. Thus, the dimension of the kernel
of M is 1.

(c) Describe the range of MT. What is the rank of MT?

Solution. Recall that ran(MT) is the row space of M , viewed as a subspace
of R4. From the row-echelon form of M , we saw that there is a
pivot in each of the three rows, so the three rows of M are linearly
independent and form a basis of the row space. Thus

ran(MT) = span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1
2
0
1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
1
3
4

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1
−1
2
0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Using the rank theorem, we also have

rank(MT) = 3.

5. (Disclaimer: according to updated information, you are unlikely to have
true/false questions on your second test. I am leaving these here because
I think they are good practice.)

(a) True/False: There is a spanning list of length 3 in Z2
13.

Solution. True. A trivial example is ([ 10 ] , [ 01 ]), since for any vector [ a1
a2 ] ∈ Z2

13,
we have

[ a1
a2 ] = a1 [ 10 ] + a2 [ 01 ] .

(b) True/False: There is a linearly independent list of length 7 in R6.

Solution. False. Any linearly independent list in a finite-dimensional vector
space of dimension n has length at most n. dim(R6) = 6 < 7, so no
list of length 7 in R6 can be linearly independent.

(c) True/False: There is a matrix A ∈M5,7(R) with dim(kerA) = 2 and
rank(A) = 4.
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Solution. False. By the rank theorem, we have

7 = dim(ker(A)) + rank(A)

for each A ∈M5,7(R). Thus, we obtain

7 ≠ 2 + 4,

so no such matrix A exists in M5,7(R).
(d) True/False: Each matrix A ∈M8,8(R) with rank(A) = 0 has linearly

independent columns.

Solution. False. Linearly independent columns necessitate full rank.
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